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NTHMP MES – Meeting Notes 10/12/2022 

Virtual Meeting using MS Teams 

Agenda 

1. Welcome, Introductions, and Partner Announcements 

2. FEMA National Risk Index (NRI) Discussion on NRI concerns and NTHMP letter 

3. Annual Work Plan ‐ Review and discuss draft work plan 

4. Closing Remarks 

 

Attendees: 

Elyssa Tappero, WA EMD; Danté DiSabatino, WA EMD; Althea Rizzo, Oregon; 

Emergency Management; Summer Ohlendorf, NTWC; Dave Snider, NTWC; Dave 

Kochevar, NWS Alaska Region Headquarters; Curtis Johnson – Alaska DHS&EM; 

Nate Wood, USGS; Regina Browne, VITEMA; Mario Kaipat, CNMI HSEM; Nic Arcos, 

NOAA/NCEI; Amanda Siok, FEMA; Ian Sears, NOAA; Victor Huerfano, PRSN; Todd  

Becker, Cal OES; Ed Fratto, Northeast States Emergency Consortium; Jeff Lorens, 

NWS Western Region HQ; Kara Sterling FEMA RX; Lewis Kozlosky NOAA; Julie 

Fujimoto, Hawaii EMA; John Marquis, SCEC/TsunamiZone; 

 

1. Welcome:             Todd Becker, Co‐Chair of MES 

No new members to introduce. No partner announcements. 

 

2. FEMA National Risk Index (NRI) Discussion on NRI concerns and NTHMP letter 

Nate Woods, USGS 

Todd Becker, Co‐Chair of MES 

 

 Background and Introduction to why we are discussing the NRI tool 
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o https://hazards.fema.gov/nri/ 

o Tool developed by FEMA for mapping the potential for negative impacts 

as a results of hazards, including tsunami 

o The NRI was discussed at the Summer Meeting 

o NTHMP is working on a letter to FEMA to express some concerns and 

potential solutions with the letter. 

o Today’s discussion and presentation on the NRI is so the MES is further 

informed on the NRI issues and the NTHMP letter to FEMA. 

 NRI overview and presentation by Nate Woods, USGS. 

(PDF slides are attached) 

o NRI mapping platform and intended use reviewed 

o Tsunami in the NRI 

o Units of Analysis (Counties and Census Tracts) 
o Calculation of Risk 
o Social Vulnerability 
o Loss estimates 

o Recommendations for NRI Revisions 

 

 NRI Discussion  

o Not aware that any FEMA grant program is currently using the tool; 

o The intent of tool was to treat every tool the same; 

o The draft NRI letter to FEMA has already been shared with FEMA. Want 

to the letter out by next CC meeting; 

o The NRI should use Hazus; 
o Need to address equity issues in tool; 
o Vulnerability in tool is agnostic to the hazard and not useful; 
o Need to include territories in tool; 
o NOAA has social science committee, it would be good to involve them 

on this; 

o The relative scale between counties isn’t useful for the local 
jurisdictions; 



 
 

MES Meeting Notes – October 12, 2022    Page 3 of 3 

 

3. Annual Work Plan ‐ Review and discuss draft work plan   

Todd Becker, Co‐Chair of MES 

 Review draft Work Plan developed from previous MES partner input 

o Link to work plan: https://docs.google.com/document/d/176‐

lkEHHaC23AEzjcrB7aKHnY2f9I5Dc/edit?usp=sharing&ouid=10881827

9981971996428&rtpof=true&sd=true 

 Some parts of the work plan still need to be completed for some activities. 

MES Co‐chairs will follow up with the Activity Leads (State/Agency) 

identified on the work plan activity to complete.  

 Provide any additional comments or suggestions for work plan over next 

couple weeks before it is finalized. 

 

4. Closing Remarks 

 Next meeting: The next scheduled quarterly meeting falls in January just 

before the Winter Meeting. Co‐chairs will assess if that meeting should be 

moved to December and send out an update. 

 



Nathan Wood, PhD
Western Geographic Science Center

nwood@usgs.gov

NTHMP MES 
Discussion of 
FEMA National 

Risk Index



Overview of the National Risk Index

• FEMA online mapping application
• Visualizes “natural hazard risk metrics” 

o 18 natural hazards
o Expected annual losses 
o Social vulnerability
o Community resilience

• Intended uses for city, county, and Tribal organizations
o Mitigation planning
o Hazard Mitigation Assistance Grant Application
o Risk communication



Tsunami Treatment in National Risk Index
• Uses historic run-up data from NCEI Global Tsunami 

Database Historic data to capture “tsunami threat”

• Concerns
o Historic data doesn’t reflect threats with geologic time scales (e.g., 

subduction zones)

o Not exhaustive and biased to places that maintain tide gauges

o Neighboring counties have different “tsunami threat” even though 
threat is regional (e.g., subduction zones)

o Tsunamis are rarer than riverine flooding or other weather events, so 
tsunamis are under-emphasized in the “risk analysis”

o Differences in “tsunami” threats not recognized (e.g., local vs. 
distant)

o Compiling state/territorial tsunami zones creates temporal and 
scenario mismatches



Units of Analysis in National Risk Index

NRI units

• Counties

• Census tracts

Concerns
• County-level assessments are problematic given the 

scale and localized, sub-county footprints of many of 
the hazards being addressed, such as tsunamis. 

• Census tracts are also not very relevant for local 
planning because their boundaries are not well 
known to people that do not directly work with U.S. 
Census Bureau data. 



Calculation of Risk in National Risk Index

• Hazard-specific “risk” calculations
• Expected Annual Loss multiplied by Social 

Vulnerability Index 
• Divided by Community Resilience Score

• Unclear NRI goals with “risk” score
o If NRI goal is preparedness, then why expected 

annual loss estimates? 
o If NRI goal is hazard mitigation, then why link 

expected economic losses for county to to
demographically-derived social vulnerability is 
unclear. 

o If NRI goal is local planning, then why have 
relative indices that compare one county 
against the other ~3,000

• Mathematically questionable to multiply 
an economic loss estimate by a hazard-agnostic 
social-vulnerability score and then after that, divide 
it by a community resilience score. 



Social Vulnerability Treatment in National Risk Index
Social Vulnerability Index (SoVI) calculation
o Based on Census data at census tract and county
o Relative assessment comparing one unit to all others
o Calculation based on “principal component analysis”
o Hazard context ignored

Concerns
o Hazard context ignored. “Vulnerability” to drought is the 

same as to local tsunami in terms of demographic variable
o Relative assessment not relevant to local planning. So, 

“vulnerability” of your tract/county is a relative term 
comparing it to all tracts/counties in the U.S.

o Pitfall of relative assessment is that unit with “low” score 
thinks they don’t need to plan.



Social Vulnerability Treatment in National Risk Index

Concerns
o Index is documented 

as being very 
“volatile” and not 
recommended for 
policy/planning

o Scale discrepancies in 
index values between 
tracts and county



Expected Loss Estimates

Expected Annual Loss for each census block 
is calculated by multiplying
• Building value exposed to Tsunami events in the 

Census block (in dollars)
• Annualized tsunami frequency for the Census block 

(events per year)
• Bayesian-adjusted building Historic Loss Ratio for 

tsunami for the Census block (which comes from 
SHELDUS database)

Concerns:
• Issues with incomplete/incorrect hazard data are 

propagated into this calculation



Potential Recommendations for NRI Revisions
Potential recommendations
• Tsunami hazard issue: work with NTHMP to properly characterize 

tsunami threats to recognize likelihood and consequences of 
different tsunami sources (e.g., local vs. distant)

• Unit of Analysis issue: include “Census Designated Places” to 
identify incorporated cities, unincorporated villages

• Social vulnerability issues: use CDC approach which isn’t so 
statistically dependent or relatively assessed

• Expected Loss Estimates: in theory, these issues are minimized 
with changes to hazard characterizations

• Risk calculations: would require more thought and discussion

Open discussion for NTHMP MES:
• How much of this do you feel the NHTMP letter to FEMA should 

include? 
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Abstract
As a concept, social vulnerability describes combinations of social, cultural, economic, 
political, and institutional processes that shape socioeconomic differentials in the expe-
rience of and recovery from hazards. Quantitative measures of social vulnerability are 
widely used in research and practice. In this paper, we establish criteria for the evaluation 
of social vulnerability indicators and apply those criteria to the most widely used measure 
of social vulnerability, the Social Vulnerability Index (SoVI). SoVI is a single quantita-
tive indicator that purports to measure a place’s social vulnerability. We show that SoVI 
has some critical shortcomings regarding theoretical and internal consistency. Specifically, 
multiple SoVI-based measurements of the vulnerability of the same place, using the same 
data, can yield strikingly different results. We also show that the SoVI is often misaligned 
with theory; increases in variables that contribute to vulnerability, like the unemployment 
rate, often decrease vulnerability as measured by the SoVI. We caution against the use of 
the index in policy making or other risk-reduction efforts, and we suggest ways to more 
reliably assess social vulnerability in practice.
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1  Introduction

Who you are and where you live can have a profound impact on how you prepare for, 
experience, and recover from environmental shocks and extreme events (Morrow 1999; 
Ngo 2003; Laska and Morrow 2007). As tragically illustrated by Hurricane Katrina, the 
same hazard event is often experienced in different ways by different people—the short- 
and long-term outcomes of hazards vary across socioeconomic and geographic gradi-
ents. The social scientific literature argues that these differential experiences of, and 
responses to, hazards are rooted in “social vulnerability.” As a concept, social vulner-
ability describes combinations of social, cultural, economic, political, and institutional 
processes that shape the differential experience of hazards (Adger 2006; Turner et  al. 
2003; Birkmann 2013).

Many practitioners and policymakers recognize the influence of social factors on risk 
management and recovery and therefore seek ways to include social vulnerability in plan-
ning efforts. Often this “inclusion” of social vulnerability is manifested through the use of 
data-driven tools that quantify vulnerability among diverse populations and places (Birk-
mann 2007; Fekete 2012; Dunning and Durden 2013; Beccari 2016). The most widely 
used of these tools is a quantitative indicator called the Social Vulnerability Index (SoVI) 
which was developed through a review of hazard case studies by Cutter et al. (2003) and 
now has thousands of citations (3094 according to Google Scholar 12/1/17). SoVI is fre-
quently used when comparing geographic units in terms of their relative levels of vulnera-
bility, where the upper and lower bounds of the index correspond to the highest and lowest 
vulnerability levels in a study area. SoVI’s impact is not limited to the academic literature; 
it has been widely used in place-based assessments by governmental bodies (e.g., Dunning 
and Durden 2011; Flanagan et al. 2011; Emrich et al. 2014; U.S Environmental Protection 
Agency 2015), and charitable organizations (e.g., OXFAM America 2009). Quantitative 
measures of social vulnerability have had a profound impact on scholarship and practice.

SoVI was originally constructed as a general environmental hazards vulnerability 
measure for the USA (Cutter et  al. 2003), but has since evolved to have hazard and 
geographic context-specific forms, including: local jurisdictions (Amec-Foster-Wheeler 
2016), state-level mitigation planning (South Carolina Emergency Management Divi-
sion 2008), metropolitan comparisons (Borden et  al. 2007), international applications 
(Holand and Lujala 2013; Chen et  al. 2013; Guillard-Goncalves et  al. 2015; Hummel 
et al. 2016), preparedness for specific hazards (Kleinosky et al. 2007; Wood et al. 2010; 
Johnson et al. 2012), and for disaster recovery (De Oliveira Mendes 2009; Finch et al. 
2010, State of South Carolina 2017).

The SoVI approach has been applied in many places throughout the world and has 
inspired other quantitative indicators of social vulnerability. However, there have not 
been sufficient efforts to critically evaluate the construction of these indices. In this 
paper, we provide a framework for evaluating quantitative social indicators and use the 
SoVI as a case study to demonstrate the framework. Previous efforts to evaluate SoVI 
include Cutter and Finch (2008) that illustrates geographic variability in SoVI, Tate 
(2012) that subjects SoVI to sensitivity analyses, and Schmidtlein et al. (2008) that uses 
subjective criteria. Our approach bears some similarity to Schmidtlein et  al. (2008), 
however departs in the application of objective, rather than subjective criteria. In this 
article, we establish principles for objectively evaluating indicators and then evaluate 
SoVI against those criteria. A substantial portion of this manuscript is given over to 
development of these “objective” techniques for the assessment of indices.
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1.1 � Measuring social vulnerability

Social vulnerability is rooted in and emerges from the interaction of forces that range from 
macro-economic and institutional to micro-economic and situational. The notion that in 
spite of this complexity, social vulnerability can be quantified using a single numeric index 
is a bold epistemological position. More so, because social vulnerability is conceptual-
ized as consisting of many different dimensions—sensitivity, exposure, adaptive capacity 
(Adger 2006)—and in practice these dimensions are collapsed into a single indicator as 
opposed to measured through independent indicators.

Social vulnerability is an example of a “latent” variable, something inherent to a per-
son or a place but not directly observable. Viewing social vulnerability as a latent variable 
implies that from a quantitative perspective, it can only be measured indirectly through 
statistical procedures. That is, with sufficient information about things that can be directly 
measured, such as the demographic attributes of an area, a numerical quantity measuring 
social vulnerability can be defined. There are a number of statistical procedures for esti-
mating latent variables; the most widespread social vulnerability indicator, the Social Vul-
nerability Index (SoVI), is constructed using one such latent variable method called princi-
pal component analysis (PCA) (King 1966; Rees 1970).1

The key thing to remember about latent variables like social vulnerability is that unlike 
things like educational attainment, income, or rent they cannot be directly observed and 
must be estimated indirectly using statistical machinery. Since social vulnerability is not 
directly observable, the only way to quantitatively “see” it is through statistical methods 
for latent variables, such as those used in composite indexes like SoVI, or the CDC’s SVI 
(Flanagan et al. 2011). To a naïve observer, these latent variable methods might seem like 
voodoo, that is, via the magic of statistics, one can generate a quantitative description of 
something that they otherwise could not observe. While these methods are not magic, they 
do require a significant leap of faith. Some aspects of social vulnerability, such as adaptive 
capacity, may be beyond quantification, and those that are measurable, such as percent of 
the population that is a minority, may be context dependent such that the same value in dif-
ferent places has different meaning (Birkmann 2006, 2013; Fekete 2012). The use of quan-
titative indicators is a “leap of faith” because we cannot easily determine if the quantity 
provided by the index is correct. While social vulnerability indices are widely used, none 
have been definitively validated. Recent work has shown indicators had little explanatory 
power in terms of post-hurricane Sandy assistance applications (Rufat et al. 2019).

Even in the absence of robust validation, social vulnerability indicators are widely used 
due to the importance of including a social component in hazard planning, preparation, and 
response. Indicators that score or rank places reduce the cognitive burden and complexity 
of incorporating social and economic dimensions into such processes. Unfortunately, as 
we demonstrate in later sections, these indicators have some fundamental problems. While 
they reduce complexity, they do so at the expense of interpretability and alignment with 
theory.

The synthetic nature of social vulnerability indicators makes it hard to determine if a 
quantitative index is “right” or “wrong” by comparison to some “true” measure. Concern 

1  The SoVI is constructed using over two dozen variables; the specific formulation varies over time and 
application. For those familiar with principal components analysis, the index is constructed by summing the 
first n components of from PCA. This yields a continuous numeric score. The original formulation of SoVI 
retained 11 components retaining 76% of the variance in the original data set.
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about the use of social vulnerability indicators is not new (Gall 2007; Tate 2012; Beccari 
2016). Most critiques focus on technical aspects of the construction of the index itself, 
not its place in decision-making and governance. This technical work yields contradic-
tory results: Some work finds the effect of changing input variables on output rankings to 
be limited (Schmidtlein et al. 2008), while others conclude that variable selection, among 
other factors, is highly influential on final scores (Holand et al. 2011; Cutter et al. 2013).

This paper does not dwell on ontological questions of whether or not the latent con-
struct, social vulnerability, is measurable or how it should be measured. Instead, this paper 
attempts to lay out some criteria for the construction of indicators and assess the widely 
used SoVI index against these criteria using some simple evaluations in silico. Our inves-
tigation is rooted in practical and operational concerns around the utilization of SoVI in 
resource allocation and planning decisions. When applied in practice does the SoVI yield 
sensible and coherent results?

2 � What makes a good indicator?

How does one determine if a measurement instrument, like a vulnerability indicator, is 
correct if the thing being measured is not directly observable? This question is deliberately 
broad because we view SoVI as an instance of a broad class of indicators—measures of 
poverty, resilience, collective efficacy, social cohesion are all members of the same class. 
For instruments designed to measure physical phenomena, like temperature or PH, well-
known benchmarks can be used to calibrate and validate instruments. It is difficult to estab-
lish such benchmarks for latent social variables. This difficulty led to the then controver-
sial, now famous, definition of measurement in the social sciences as “The assignment of 
numerals to objects or events according to some rule” (Stevens 1946 p. 677). Applying this 
inclusive concept of measurement to social indicators is useful as it allows one to enumer-
ate a set of rules by which an index can be judged.

Through a literature review, we have developed a set of seven criteria for complex social 
indices, like those used to measure vulnerability:

1.	 Theoretical consistency Does the index successfully measure the thing it aims to assess? 
Is there clear correspondence between the index’s conceptual framework and measurable 
inputs? (OECD and JRC 2008)

2.	 Internal consistency and robustness Does the index produce consistent results? Does it 
do so under sensitivity analyses? (OECD and JRC 2008).

3.	 Practicality Does the index use readily available information? That is, can one easily 
obtain the necessary ingredients to make (or validate) the index (European Commission 
Composite Indicators Research Group (COIN) 2016).

4.	 Transparency Are construction and application methods transparent and replicable? 
(COIN 2016; OECD and JRC 2008).

5.	 Interpretable Does the indicator translate a complex concept into an easily commu-
nicable measure? (COIN 2016). Is it easily interpreted by experts and/or community 
members?

6.	 Relevance Is the indicator directly related to the problem of interest? Is the combination 
of input values specific to the concept that the indicator seeks to measure, or are they 
overly general? (Beccari 2016; Birkmann 2006; Polsky et al. 2007; Beccari 2016).
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7.	 Externally consistent Does the indicator’s results align with other similar measures? 
(Organization for Economic Co-operation and Development (OECD) and Joint Research 
Centre (JRC) of the European Commission 2008).

These criteria are not “rules” in the strictest sense. For example, there is no simple test to 
determine if an index is interpretable (criterion 5); an index might be interpretable by some 
audiences but not others. Nonetheless, as we demonstrate in later sections, even a partial 
assessment against these criteria can yield important insights into the strengths/weaknesses of 
an index.

2.1 � Evaluating the Social Vulnerability Index

The SoVI satisfies many of these criteria. It is practical (criterion 3) because it uses readily 
available public domain census data. It is transparent (criterion 4) because the method used 
in its construction is publicly available. It is interpretable (criterion 5) because it translates the 
complex concept of social vulnerability into an easily communicable number. Perhaps, there is 
some room for investigation of criteria 5; how users comprehend the index is an open area for 
investigation as there are few examples of usability studies that have examined the cognitive 
aspects of the index such as practitioner comprehension (Fekete 2012; Oulahen et al. 2015). 
Relevance (criterion 6) has been the subject of some debate in the literature with some SoVI 
applications treating social vulnerability as detached from a hazards context (e.g., Cutter et al. 
2003), whereas others argue it should be examined contextually within a specific hazard/place 
such that attributes of the hazard or that make certain demographic variables more meaning-
ful than others (e.g., Wood et al. 2010; Schweikert et al. 2017; Cardona 2004; Birkmann and 
Weisner 2006; Birkmann 2007).

While the SoVI satisfies to varying degrees the user-facing perspectives of indicator con-
struction (practicality, transparency, and interpretability), we focus our attention on the more 
conceptual aspects of index construction, namely theoretical consistency (criterion 1) and 
internal consistency (criterion 2). Theoretical consistency (criterion 1) is also referred to as 
“construct validity.” A measurement instrument has construct validity if it accurately meas-
ures the thing it aims to describe. The classic reference on this topic, Cronbach and Meehl 
(1955) states, “construct validity must be investigated whenever no criterion or universe of 
content is accepted as entirely adequate to define the quality to be measured” (pg. 282). Theo-
retical consistency is a very broad idea; we examine it by studying how individual variables 
contribute to the index. Internal consistency (criterion 2) refers to consistency of the index: Do 
repeated measures of the same thing yield consistent results? Our evaluation of SoVI internal 
consistency focuses on whether or not repeated measurements of a specific place or set of 
places yield the same ordering of low to high vulnerability rankings. The first two criteria, the-
oretical consistency and internal consistency, are especially important when an index satisfies 
criteria around ease of construction and use; when an index is easy to construct and interpret, 
it becomes especially important to determine if the resulting index scores consistently measure 
the thing they purport to assess.
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3 � Methods

All code and data used in this paper are available to researchers at [https​://githu​b.com/
geoss​/sovi-valid​ity]. All material in this and subsequent sections can be reproduced using 
the open-sourced code and data. Due to the complexity of the subsequent analyses and for 
the sake of readability, we omit some of the technical details and refer the reader to the 
published code. In the subsequent sections of this analysis, we employ U.S. County-level 
data from the 2008–2012 American Community Survey (ACS) 5-Year Estimates (U.S. 
Census Bureau 2013). The 28 input variables that we use in our evaluation are slightly dif-
ferent from those used by Cutter al. (2003) due to changes in how data are collected and 
aggregated by the U.S. Census Bureau. National-level analyses included 3007 counties and 
137 county equivalents. We have validated our SOVI calculation function against a SPSS 
procedure provided by the Hazards Vulnerability Research Institute at the University of 
South Carolina on January 27, 2014.

The term “SoVI” requires some definition because it is widely used in the literature as 
both a framework for measuring vulnerability and a specific quantitative method. The SoVI 
framework begins with a well-articulated theory about what constitutes social vulnerability 
and then moves into a variable selection phase in which one selects quantitative indicators 
that map onto theory. Because SoVI is as much a process as an indicator, we do not see 
the specific set of variables one chooses as an existential element of SoVI, as long as the 
included variables are consistent with theory. In the social sciences, there are many cases 
where the following sequence is used: theory, variable selection, and index construction. 
Thus, while the analysis in the following sections centers on SoVI, it is more broadly rel-
evant to any “SoVI-like” indicator sets, i.e. any composite measure following the progres-
sion from theory to index construction via latent variable methods like PCA.

3.1 � Constructing SoVI

Principal components analysis takes a table with P input variables (columns) and n obser-
vations (rows) and returns P × C matrix, where each variable has a row and each “compo-
nent” is a column. A component is a weighted combination of variables, and the values in 
cells of the output matrix from PCA represent weights, often called “loadings.” A single 
component αc is simply a 1 × P vector of loadings. Components are sometimes manually 
assigned names like “race and class,” “age and tenancy,” or “urban vs. rural” based on the 
variables with the highest/lowest loadings. A noted limitation of the PCA approach is that 
resulting components are a complex mix of the P input variables, which makes the naming 
of components a highly subjective and potentially error-prone exercise2 (Palm and Caruso 
1972). Prior analyses of the SoVI, such as Schmidtlein et al. (2008), have relied on subjec-
tive interpretation of the “meaning” of components, an exercise we try to avoid in the fol-
lowing analyses; instead, we develop what we believe to be a more transparent and direct 
method for interpreting the index.

In PCA, loadings are computed for each component–variable combination (αc,p), that 
is, all of the variables included in the analysis make a weighted contribution to each com-
ponent. For example, a statistic such as median household income makes a weighted 

2  Palm and Caruso (1972) discuss some problems that emerged in urban studies due to the use of labels 
applied to cities. We review this in more detail in Sect. 6.

https://github.com/geoss/sovi-validity
https://github.com/geoss/sovi-validity
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contribution to each component of the Social Vulnerability Index. This makes it possible 
to calculate each variable’s net contribution to the index by summing across components.

To calculate a component score for each place, one simply takes the data from a place 
(xi), which will include many variables (xi is a 1 × P vector), and multiplies each of the P 
variables with the loadings for the component of interest. This yields a place-specific com-
ponent score, �i,c =

∑P

p=1
�c,pxi,p , where xi,p is the pth variable for the ith place. To build 

the SoVI for a place out of a PCA, one simply combines a subset m of the C components 
( SoVIi =

∑m

c=1
�i,c ), where m is the number of components included in the index. In the 

subsequent sections, we estimate the loadings (αc,p) and construct the final index through 
the PCA procedure outlined in Schmidtlein et al. (2008, p. 1102) and validated with help 
from University of South Carolina Hazard Vulnerability Research Institute (HVRI). In the 
subsequent analyses, all variables are standardized as z-scores and combined using prin-
cipal components analysis (PCA) with a varimax rotation. We then retain all components 
with an eigenvalue greater than or equal to 1.0.

We employ a method from Tate (2012) and deviate slightly from the original derivation 
in Cutter et al. (2003). After standardizing variables, we adjust directionality to align vari-
ables with their theorized contribution to vulnerability. For example, given a place where 
the percent of people earning more than $200,000 is one standard deviation above the mean 
would have a standardized value (z-score) of + 1. However, we flip the sign of this variable 
so that areas above the mean enter the index as a negative value since it is theorized to be 
negatively associated with vulnerability—more wealthy residents imply less social vulner-
ability. This ameliorates the need for a posteriori adjustment to PCA components. If a vari-
able has positive expected contribution, then we did not adjust the signs of the standardized 
variables. If it is expected to reduce vulnerability, we employed the Tate adjustment. Fig-
ure 2 shows the included variables and their expected contribution to the index.

3.2 � A variable‑wise perspective on index construction

An interesting and under-exploited element of PCA-based indices is that one can measure 
the overall contribution of an individual variable to the resulting index. The SoVI is con-
structed “component-wise,” and components are built from weighted combinations of vari-
ables and then summed to construct the final index, 

∑m

c=1
�i,c . An equivalent way to build 

the SoVI is to take the included component-specific weights for each variable and sum 
them to get the “net contribution” of each variable �p =

∑m

c=1
�c,p . The index can then be 

constructed as 
∑P

p=1
�pxi,p.

Table  1 illustrates this idea of a variable-wise construction of SoVI by using hypo-
thetical values for three census variables. In our hypothetical example, variable 1 (percent 
Asian) loads positively in each of the three components. The sum of the specific weights 
of the variable is γ1 = 1.5, indicating that the variable makes a net positive contribution to 
the index. Variable 2 (percent homeowner) loads identically to variable 1 on the first com-
ponent, but then has a mix of positive and negative loadings on other components, yielding 
a very weak net contribution when compared to variable 1, γ2 = 0.1. These results imply 
that the influence of the percentage of Asian residents (variable 1) on the resulting index 
is 15 times greater than the percentage of homeownership (variable 2). The first two vari-
ables make a net positive contribution to the index, meaning that as they increase, the index 
increases. The third variable (percent with advanced degree) makes a negative contribution 
to the index, γ3 = −0.9. Therefore, as the number of highly educated people increases, the 
index goes down.
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In this example, a 1% increase in variable 1 yields a 1.5 point increase in the index, a 1% 
gain in variable 2 yields a 0.1 point gain in the index, and a 1% gain in variable 3 yields a 
0.9 point decrease. Thus, one can say that in this particular example, variable 1 is the most 
influential variable, followed by variable 3.

Table  1 illustrates the equivalence of the variable-wise and component-wise index 
construction methods. Summing the net contributions of each variable and summing the 
components (columns) yield the same resulting index value. However, in the “component-
wise” approach, one loses a sense of the net impact of each variable. We believe that to 
assess criterion 1, theoretical consistency, focusing on the net contribution of each vari-
able, is essential. Traditionally, SoVI is viewed as a combination of components, which 
are in turn a combination of variables. This obscures the actual contribution of input vari-
ables. In the construction of SoVI-like indices, the components are sometimes weighted 
by their eigenvectors. One can similarly apply weights to variables to yield a weighted net 
contribution.

4 � Evaluation of internal consistency

Internal consistency is the idea that one or more valid measures of the same thing using the 
same instrument should yield similar results. That is, a working thermometer measuring 
the same glass of water twice should register approximately the same temperature.

We conduct an evaluation similar to taking (instantaneously) repeated measurements of 
the same glass of water. We compute a SoVI for all counties in a state. We then recompute 
the index for the same state using an input file that includes all counties in that state plus 
all of the counties in that state’s FEMA region. Finally, we again recompute the SoVI index 
for all counties in the state using an input file that includes all counties in the USA. In each 
of these indices, we use exactly the same county-level data and methods, but we vary the 
amount of data fed into the index. We are not varying the scale of measurement (for exam-
ple using census tracts or zip codes); in each run, we simply use different subsets of US 
counties. Effectively, this evaluation is analogous to three measurements of the same glass 
of water; it yields three measurements of social vulnerability, constructed with identical 
data and methods, for each county of the target state.

For illustrative purposes, we use counties in the state of California to discuss the inter-
nal consistency of SoVI. The three maps shown in Fig. 1a–c depict the top five (in red) and 
bottom five (in blue) ranked counties in California after calculating SoVI three times (i.e., 
just California counties, all counties in FEMA Region IX, and all US counties and county 
equivalents). Figure  1d is a summary map indicating the observed range of the county 
ranks in the three indices. For example, Lassen County in the northern part of the state 
(labeled 5 in Fig. 1a) is ranked the 5th highest out of 58 counties when SoVI is calculated 
using an input file with only California counties (Fig. 1a), but 56th out of the 58 California 
counties when SoVI is calculated using an input file containing all counties in the USA 
(Fig. 1c).

The ranks shown in  Fig.  1 are always specific to California—there is no substantive 
justification for a change of this magnitude. That is, Lassen County should not shift from 
being one of the most vulnerable places in the state to one of the least vulnerable in the 
state without altering any of the input data for the state of California simply because we 
included more counties in the input file. Similarly, San Francisco County is the 2nd most 
vulnerable county in California when computations are based on only state data (Fig. 1a), 
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the most vulnerable county in the state when calculations are based on state plus FEMA 
Region IX counties (Fig. 1b), and 43rd most vulnerable in the state when the calculation 
are based on state plus the rest of the US (Fig. 1c). Certain counties show a considerable 
range in SoVI ranking values among the three different input files (e.g., Lassen County), 
whereas other counties show little variability (e.g., Stanislaus County retains the same 
ranking for the state and national analyses).

Table 2 shows the spearman rank correlations comparing the association between the 
rankings of counties within a state when each of those rankings is constructed using pro-
gressively more data as described above. For FEMA Region 1, we combine ME, NH, MA 
into a single unit as states in the northeast have very few counties. If the SoVI exhibited 
internal consistency, then all values in Table 2 would be positive and close to 1.0. Results 
indicate a range of values from 0.34 (Illinois rankings when compared across FEMA 
Region V) to 0.94 (a composite of Main, New Hampshire, and Massachusetts across 
FEMA Region I), suggesting varying levels of internal consistency across the USA. Cor-
relations are generally higher when comparing a input file containing all counties in a state 
to an input file containing all counties in the FEMA region containing that state (average 
r = 0.75) than when comparing a state input file to US input file (average r = 0.65). How-
ever, this is not always the case; for example, SoVI rankings for counties within Georgia 
(FEMA Region IV) based on the national- and state-level analyses produce a correlation of 
r = 0.5. This means counties in Georgia ranked as highly vulnerable in state-level analysis 
ranked as less (or more) vulnerable in national- or regional-level analysis—remember we 
are always comparing only the counties within a single state, so the correlation of 0.5 for 
Georgia is based on comparing only the counties of Georgia to each other. In total, 7 out of 
10 states produce correlations below 0.70. The lowest correlation was found for the FEMA 
region-state comparison in Illinois (r = 0.34). 

In this evaluation, one can think of each county in each target state as a “cup of water” 
into which we have inserted three thermometers—the thermometers in this case measure 
social vulnerability and are constructed with the same variables and methods but progres-
sively larger numbers of counties. We show that despite using the same input data and 
methods, social vulnerability, as revealed by the SoVI, changed markedly in response to 

Fig. 1   The most and least socially vulnerable counties in California based on three different county-level 
input files (a) California, b FEMA Region IX (including Arizona, California, Hawaii, and Nevada), and c 
the entire USA. California has 58 counties. Areas labeled 1–5 (red) represent the most vulnerable counties, 
whereas scores 54–58 (blue) represent the least vulnerable counties. d The range in SoVI rankings for each 
California county based on the state, regional, and national SoVI analyses
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expanding the pool of data that informs the calculations. Our results show that SoVI lacks 
internal consistency. The index makes it seem that the “most” and “least” vulnerable coun-
ties in California change in response to expanding the amount of data fed into the index 
(Fig. 1). Furthermore, we show that this is not an isolated phenomenon and in much of the 
USA, the rank correlation between SoVIs computed with the same data and methods but 
with differing amounts of input data is low. Practically, this leaves us wondering, if SoVI is 
a valid representation of the latent construct social vulnerability, which one of these three 
divergent measures correctly captures it for a given state.

Internal consistency is a critical property for any measurement instrument. This evalu-
ation highlights problems with the SoVI index. A model created at the FEMA region 
scale will lead to the targeting of different counties than the same model run at the state or 
national scale. Similarly, a model that omits parts of a metropolitan area (or other type of 
region) will yield different results than one that includes the entire area. Lack of internal 
consistency is not an academic curiosity; it can have real consequences for real lives when 
data are used to allocate resources or develop risk-reduction policies.

5 � Evaluation of theoretical consistency

Theoretical consistency, which we also refer to as construct validity, is the degree to which 
an index measures what it claims to be measuring. With a latent variable like social vulner-
ability, construct validity can be especially difficult to assess. SoVI is a complex index con-
structed from multiple variables; in this evaluation, we use the “variable-wise” approach 
outlined above to examine the construct validity of the index. In the case of SoVI, we can-
not assess construct validity by comparing the value of the index in a particular place to 
some gold standard or perfect measure of a particular place’s vulnerability. However, the-
ory and the large existing literature provide strong guidance on how most, but not all, vari-
ables should contribute to the index. For example, a variable like the unemployment rate 
clearly should make a net positive contribution to social vulnerability, i.e., the more unem-
ployed people there are in an area, the more socially vulnerable it becomes. Other vari-
ables, like the percent of the population that is Asian, are more difficult to assess. Based on 
the literature, we have assigned each variable in the SoVI index an expected net positive or 
net negative contribution, and these expectations are shown in the “expected contribution” 
column of Fig. 2. Positive (+) implies that increases in that variable should increase social 
vulnerability scores and negative (−) implies that increases in that variable should reduce 
social vulnerability scores.

To test the expected contribution of each variable, we constructed a SoVI using all US 
counties and county equivalents. We then compared the expected net contribution of each 
variable to the actual observed net contribution (denoted in the “original contribution” col-
umn of Fig. 2). For example, the vulnerability science literature suggests that higher per-
centages of a population that is unemployed are expected to increase social vulnerability. 
However, in our national-level SoVI, we find that increasing unemployment in a county 
actually decreased the total indicator of social vulnerability (Fig. 2).

Figure  2 also orders the demographic variables in terms of their importance to a 
national-level SoVI, with highest importance shown on the highest row. High importance 
means that the variable makes a large net contribution to the index, and low importance 
means that changes to that variable have a small impact on the resulting SoVI score. A 
variable can have a “high impact” if its net contribution is positive or negative—the order 
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in the table is based on the absolute value of the net contribution. We rank variables based 
on their net contribution; the most important gets rank #1 and the least important gets rank 
#28. In the national-level model, the age dependency ratio was the most important variable 
(ranked #1) and persons per housing unit was the least important (ranked #28, leftmost 
column of Fig. 2).

We also examined how the net contribution of each variable changed as we increased 
the amount of data used to calculate the index. Following the procedure used in the analysis 

Fig. 2   Summary results for changes in variable contributions and rank values due to changes in the geo-
graphic extent of the input. Input variables are listed in descending order of importance (net contribution) 
to the index (when constructed using all counties in the USA). The expected contribution to social vulner-
ability (positive or negative) is shown, as is the actual contribution at the national level. Variable instability 
is shown by “# of reversals.” The column counts the number of times a variable reverses its contribution to 
the index, from positive to negative or vice versa; the maximum number of reversals possible is 20. Instabil-
ity in the relative importance of variables to the index is shown in “SoVI rank value” the observed range in 
ranks (from 1 being the most significant contributor to the index and 28 being the least)



430	 Natural Hazards (2020) 100:417–436

1 3

of internal consistency, we calculated SoVI for each FEMA region and then a state within 
each region, yielding 21 total SoVIs (1 national model, 10 FEMA region models, and 10 
state models). We find the net contributions of variables across these models with differing 
geographic extents to be highly unstable both in terms of sign and magnitude. Approxi-
mately, 90% (25) of the (28) variables used to construct SoVI change the sign of their net 
contributions as the quantity of data used to construct the index changes. For example, 
when SoVI is computed at the national level, the third most important variable in terms of 
net contribution to the index is the Percent of the Population Employed in the Service Sec-
tor. This variable, at the national scale, makes a strong net positive contribution to SoVI; 
that is, as the number of people employed in the service sector increases, a county’s vulner-
ability increases. However, when SoVI is constructed using only the counties of FEMA 
Region I, the Percent of the Population Employed in the Service Sector contributes in a 
negative way: More service sector employment decreases a county’s vulnerability score.

The third column of Fig. 2 (# net reversals) counts how often a variable flipped from 
making a positive to negative contribution to SoVI. For example, the variable Percent 
Mobile Homes theoretically increases vulnerability—but in 12 out of 20 analyses, increas-
ing shares of mobile homes were associated with decreasing social vulnerability scores. 
The net-variable-wise contribution of this variable oscillated from a positive to a nega-
tive contribution as we changed the geographic extent of the input data. Only three of the 
28 input variables were consistently aligned with their theoretically expected contributions 
across the various geographic extents.

In addition, we examined the importance of each variable to the resulting score as the 
geographic extent of the input changes. We again found an enormous amount of volatil-
ity; at the extremes some variables went from being the most influential contributor to the 
index to being the least influential contributor. (Rightmost column of Fig. 2 shows the min, 
max, and average rank.)

Our results raise questions about the meaning of the SoVI index to a practitioner or 
policy maker because widely accepted understandings of how social and economic vari-
ables relate to vulnerability seem to be upended in the index. One can know, from theory, 
how different variables ought to contribute to social vulnerability. When we construct SoVI 
indices using  data describing US counties, we find that variables often make counterin-
tuitive contributions to the index, i.e., variables increasing social vulnerability when one 
anticipates they should decrease it (or vice versa). The volitality we observe suggests issues 
of theoretical consistency and raises questions about the interpretability of the index.

6 � Discussion

There have been many efforts to quantify vulnerability, see Beccari (2016) for an overview, 
yet there has not been equal attention paid to examining the utility of the methods used 
to do so. The objective of this article was to establish criteria for the assessment of social 
indicators and to evaluate the Social Vulnerability Index (SoVI) against those criteria. 
SoVI was chosen because of its prolific application in recent years at multiple geographic 
scales and in many parts of the world.

Vulnerability is a complex, latent, construct; therefore, we do not believe it is possible 
to directly measure the “correctness” of the SoVI, i.e., its ability to correctly estimate a 
place’s vulnerability. Instead, we evaluated the SoVI against a set of generic criteria. Such 
tests do not require knowing the actual vulnerability of a place yet allow us to assess the 
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index on empirical grounds via statistical methods. In this section, we discuss the implica-
tions of our tests on index construction and on the use of index-based results by practition-
ers interested in understanding more about place-specific social vulnerability.

SoVI aims to provide a summary of complex social phenomena via an ensemble of vari-
ables. What does such an amalgamation of data mean in an ontological sense? How should 
one interpret the index? What do the numbers tell us? The act of understanding an index 
and its validity we believe requires an examination of its constituent parts. In this paper, 
we argue that these constituent parts are the variables that constitute the index. Thus, we 
believe that is it possible to assess construct validity by examining how individual vari-
ables contribute to the index. We find that the relative contributions of variables are highly 
unstable. For example, simply by changing the geographic extent of the inputs, we are able 
to make variables shift from being among the most important ingredient to the least impor-
tant (Fig. 2).

On the other hand, it does not seem unreasonable that the meaning of social vulnerabil-
ity would change with geographic context. Many contend that vulnerability is contextual 
to the type of hazards and potential risk-reducing options (Buckle et  al. 2000; King and 
MacGregor 2000; Jones and Andrey 2007; Birkmann 2007). For example, the percentage 
of Asian individuals within a county likely has a different meaning for social vulnerability 
in Maui County, Hawaii (47% are Asian alone or in combination with one or more other 
races), than it does in Aroostook County, Maine (0.6%). The role of race in developing 
social capital, access to information, and other aspects of vulnerability likely varies due to 
place-based differences.

However, our results also demonstrated that certain demographic variables may influ-
ence SoVI rankings in ways that are counterintuitive. When we examined the net contribu-
tions of variables, we found that some which should positively affect vulnerability actu-
ally have a negative impact on SoVI scores (and vice versa). For example, as percent of 
total population that is African-American increases, theory posits that social vulnerability 
should increase in that geographic region because variables that measure potentially mar-
ginalized populations increase vulnerability. However, the percent of total population that 
is African-American variable decreases social vulnerability when SoVI is constructed with 
all counties in the USA and for several other input files. In many cases, social vulnerability 
scores decreased when the percentage of unemployed persons increased. These results cast 
doubt on the construct validity of the index.

In our analysis, the ordering of counties in the same state from most to least vulnerable 
changed depending on which subset of the counties in the USA were used as inputs. This 
volatility becomes especially salient for local practitioners (e.g., city, county, and state) 
hoping to use results performed by others at a regional or national scale because relative 
rankings for their jurisdiction of interest may change dramatically depending on the scale 
of analysis and inclusion of other jurisdictions to the analysis. This again raises an episte-
mological issue in that the meaning of vulnerability changes for an individual county or set 
of counties within the same state if another county in a different state is included. Others 
have also documented SoVI’s sensitivity to scale and raised similar concerns that national 
indices may have limited relevance or applicability to local resource planning (Cutter et al. 
2013; Tate 2012). However, our results suggest that SoVI has limited utility generally as it 
fails simple tests of internal consistency and construct validity.

Additional challenges exist, such as the input data itself. Specifically, this study relies 
on use of ACS provided by the U.S. Census Bureau and large margins of error for a sin-
gle data point could drastically affect the outcome of a geographic region (Spielman et al. 
2014). The authors note that this is a profound component of understanding and measuring 
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constructs of social vulnerability, but falls outside the scope of the method itself, which is 
the subject of this paper.

Fundamentally, the problems we identify with SoVI are rooted in the methods used to 
construct the index. Principal components analysis relies on a variance–covariance matrix, 
which allows a change in a single variable to cascade throughout the index. Therefore, 
matrix structure may change drastically at varying levels of analysis, or when a variable 
that co-varies strongly with others is removed.

It is worth noting that there are historical parallels between the SoVI and now out of 
fashion line of research on urban “factorial ecology.” Factorial ecology emerged as a line 
of inquiry in the late 1960s and continued as an active area of research through the 1970s. 
The term “factorial ecology” refers to the use of a method, factor analysis, to describe soci-
oeconomic patterns within cities using census data describing the characteristics of resi-
dents (Janson 1980). Factor ecologists commonly assigned labels like “socioeconomic” or 
“demographic” to the factors that resulted from an analysis. A factor consisted of many 
variables, each one weighted differently, which is substantively similar to the common 
practice of naming PCA components in a SoVI analysis. The factor ecologist’s subjective 
interpretation of factors often ignored variables, a practice that Palm and Caruso (1972) 
argued was a form of “speculative synthesis” and that the labels did not align with variable 
weights defining the factor. Their indictment of factor analysis is extensive and beyond the 
scope of this paper. For our purposes here, it is interesting to note that their criticism of 
the “crudeness of classification” in factor analysis could be extended to SoVI. That is, we 
find that in many cases, applying the label “vulnerability” to SoVI scores is problematic 
because of misalignment with theory and volatility in measurements.

7 � Conclusion

We observe some substantial problems with the internal and theoretical consistency of 
the SoVI. However, we also recognize the importance of measuring social vulnerability 
in hazard planning, mitigation, and response. The next step, then, is to understand where 
improvements can be made so that this critical concept can continue to be utilized in ongo-
ing planning efforts.

Social vulnerability is a complex concept, representing it on a single scale that ranges 
from high to low is reductionist as there are many forms of vulnerability. We believe that 
the best way forward is to allow experts to construct meaningful indicators by specifying 
variable-specific weights, without reliance on statistical techniques like PCA. Rufat et al. 
(2019) found that this approach performed better than existing indices in explaining Hur-
ricane Sandy outcomes. All indices used for public policy should pass some test of their 
utility, whether using the criteria we outline or others. There must be a robust assessment 
of the quality of the measurements before an indicator is used in practice.

Variable selection plays a paramount role in index construction (Clark et al. 1974), 
and research shows that the process of selecting variables can be improved by the inte-
gration of qualitative methods and local expert opinion (Schmidtlein et  al. 2008), as 
well as better recognition of the policy-relevant purpose of why an assessment is being 
developed (Birkmann and Wisner 2006). Holand and Lujala (2013) discuss conceptual, 
technical, and geographic accommodations that also would help in variable selection. 
Based on this previous work, more research on variable selection and its influence on 
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social vulnerability indices would further the application of indices in risk-reduction 
planning.

Another area for more investigation is the potential benefit of simply communicating 
the covariance of variables, instead of developing composite indices composed of many 
variables. For example, knowing that renter-occupied households often co-occur in 
places where there are high percentages of populations where English is a second lan-
guage can help inform outreach and preparedness planning across a state. These demo-
graphic linkages, which are somewhat hidden in the index, may help emergency manag-
ers tie vulnerability factors directly to action-oriented strategies. This objective could 
also be served using other analytical approaches, such as similarity indices (Chang et al. 
2015) and clustering approaches (Rufat 2013, Wood et al. 2015) that focus on the com-
monalities in vulnerability factors.

Disaster risk-reduction efforts increasingly focus on using quantitative indicators of 
social vulnerability to identify vulnerable people and places, prioritize projects, and 
allocate resources. We have developed criteria by which these indicators can be assessed 
and demonstrated their application to a widely used indicator, SoVI. By many criteria, 
the SoVI is a success: It is easily interpreted, reproducible, and widely used. However, 
our examination of the index led to concerns about the index’s internal and theoreti-
cal consistency. The issues we have identified here raise questions about its utility for 
policy making, planning, and hazard mitigation. We publish all code, and data, so that 
others may reproduce (or refute) our work.

While there have been other published analyses of uncertainty and scale sensitivity 
in vulnerability indicators, our approach is somewhat unique. We start from the position 
that vulnerability is a latent construct and thus hard to directly observe and validate. 
Rather than validating SoVI through an examination of its absolute validity (by refer-
ence to external outcome), we instead assess the index against a set of generic criteria. 
Our results suggest that the SoVI lacks internal consistency because relative vulner-
ability rankings for counties within a specific state were volatile and failed to converge 
when other, external counties were added to the index construction. Our results also 
suggest that the SoVI lacks theoretical consistency because in many instances, variable-
wise contributions ran counter to expectations based on the social scientific literature 
(e.g., higher poverty levels counterintuitively led to lower SoVI scores). For these rea-
sons, we question if the SoVI provides a defendable or reliable approach for understand-
ing place vulnerability to guide risk-reduction efforts. At a minimum, practitioners need 
to be made aware of these significant limitations and issues if the SoVI is to be used for 
actual planning. For those who wish to continue with the SoVI framework, we believe 
that it is essential to unpack the meaning of the index by examining how each variable 
contributes to the final score. Doing so allows researchers to determine if the particular 
weighted combination of variables returned by the PCA procedure aligns with their con-
ception of social vulnerability.

We suggest a few ways to improve the measurement of vulnerability. Ultimately, we 
believe that vulnerability is not a variable like temperature that runs from hot to cold, 
but something that manifests itself in many different forms in many different places and 
that any instrument used in measurement should be subject to due diligence using our 
(or other) criteria before it is used for risk-reduction planning. We believe place- and 
hazard-specific contextual measures of vulnerability are not only fruitful avenues of 
research but also critical in helping communities and policy makers to better prepare 
for, respond to, and recover from extreme events.
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Abstract Tsunamis generated by Cascadia subduction zone earthquakes pose significant

threats to coastal communities in the U.S. Pacific Northwest. Impacts of future tsunamis to

individuals and communities will likely vary due to pre-event socioeconomic and demo-

graphic differences. In order to assess social vulnerability to Cascadia tsunamis, we adjust

a social vulnerability index based on principal component analysis first developed by

Cutter et al. (2003) to operate at the census-block level of geography and focus on com-

munity-level comparisons along the Oregon coast. The number of residents from blocks in

tsunami-prone areas considered to have higher social vulnerability varies considerably

among 26 Oregon cities and most are concentrated in four cities and two unincorporated

areas. Variations in the number of residents from census blocks considered to have higher

social vulnerability in each city do not strongly correlate with the number of residents or

city assets in tsunami-prone areas. Methods presented here will help emergency managers

to identify community sub-groups that are more susceptible to loss and to develop risk-

reduction strategies that are tailored to local conditions.
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1 Introduction

The 2004 Great Sumatra–Andaman earthquake in the Indian Ocean raised global aware-

ness of the vulnerability of coastal populations to tsunamis. One of the most significant

tsunami threats in the United States is a tsunami related to an earthquake generated within

the Cascadia subduction zone (CSZ), the interface of the North American and Juan de Fuca

tectonic plates extending more than 1,000 km from northern California to southern British

Columbia (Fig. 1; Atwater 1987; Rogers et al. 1996; Satake et al. 1996). A future CSZ-

related earthquake is capable of generating a series of tsunami waves possibly 8 m or

higher that could inundate the nearby U.S. Pacific Northwest coast in fifteen to thirty

minutes after initial ground shaking (Oregon Department of Geology and Mineral Indus-

tries 2008; Cascadia Region Earthquake Workgroup 2005; Walsh et al. 2003; Priest et al.

2001; Myers et al. 1999). Although much has been done to improve tsunami-hazard

awareness (Bernard 2005; Oregon Department of Geology and Mineral Industries 2007;

Priest et al. 1996) and tsunami-warning systems in this region (Gonzales et al. 2005;

McCreery 2005), less has been done to understand community vulnerability to tsunamis,

specifically the potential impacts on people and infrastructure (U.S. Government

Accountability Office 2006). Given the catastrophic potential and quick arrival times of

tsunamis generated by local CSZ earthquakes, emergency managers must understand who

is vulnerable to tsunamis so that they can prepare realistic and effective evacuation and

response procedures for individuals in tsunami-prone areas.

Vulnerability as a science involves examining the combination of physical, social,

economic, and political components that influence the degree to which an individual,

community, or system is threatened by a particular event, as well as their ability to mitigate

these threats and recover if the event was to occur (Cutter 2001, 2003; Cutter et al. 2000;

Mileti 1999; Hewitt 1997; Wisner et al. 2004). Although definitions and applications of the

term vulnerability vary (Cutter 1996; Weichselgartner 2001), common elements within the

natural hazard’s literature include concepts of exposure, sensitivity, and resilience (Cutter

et al. 2006; Cutter 2003; Dow 1992; Hewitt 1997; Turner et al. 2003). Exposure is related

to hazard proximity and the environmental characteristics of a place, while sensitivity and

resilience are characteristics of an individual, group, or socioeconomic system. Sensitivity

refers to differential degrees of potential harm and the ability of an individual or com-

munity to protect itself from future events (Cutter et al. 2006), while resilience addresses

an individual’s or community’s coping and adaptive capacities during and after an extreme

event (Adger et al. 2005; Tobin 1999; Turner et al. 2003). Given equal exposure to external

environmental threats, two groups may vary in their sensitivity and resilience due to

internal societal characteristics.

Previous studies of societal vulnerability to CSZ-related tsunamis have largely focused

on critical facilities (Charland and Priest 1995; Lewis 2007), perception studies (Johnston

et al. 2005; Johnston et al. 2007; Wood and Good 2005), and local case studies (Wood

et al. 2002; Wood and Good 2004). Regional comparisons of community exposure to

Cascadia-related tsunamis on the Oregon coast (Wood 2007) and the open-ocean coast of

Washington (Wood and Soulard 2008) indicate that tens of thousands of people live, work,

and play in areas likely to be inundated by CSZ-related tsunamis. A significant portion of

these individuals may require assistance in preparing for and responding to a tsunami. For

example, 45% of the residents in the tsunami-prone areas of the City of Bandon, Oregon,

are over 65 years in age (Wood 2007), and these older residents may have difficulty in

evacuating, given the predicted 30 min between initial CSZ earthquake ground shaking

and subsequent tsunami inundation. In addition to age, Wood (2007) identifies other
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demographic attributes of exposed populations considered indicators of social vulnera-

bility, such as gender, race, and socioeconomic status (Cutter 2001; Cutter et al. 2003;

Tierney et al. 2001; Wisner et al. 2004).

Assessing community vulnerability through an inventory of demographic attributes,

such as those presented in Wood (2007), will help managers identify isolated issues of
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vulnerability (e.g., an elderly population needing assistance to evacuate quickly), but it

fails to address how multiple demographic characteristics of an individual or neighborhood

interact and likely amplify each other. The vulnerability of an individual who is living

below the poverty level, elderly, and unable to speak the primary language is likely much

larger than just the result of each attribute taken in isolation. The same can be said at the

community level, where one neighborhood may be significantly more vulnerable if it

contains high concentrations of single-parent, low-income, and poorly-educated popula-

tions living in close proximity to each other. Therefore, to appreciate the complex nature of

social vulnerability, emergency managers need methods to understand the multivariate

characteristics of individuals and communities in tsunami-prone areas.

One approach to quantify the multivariate nature of a population is the use of explor-

atory factor analysis, a data-reduction technique that has been widely used in human-

geography research (Clark et al. 1974, 1998; Mather and Openshaw 1974; Scott 1975).

Principal component analysis (PCA), one of the most common multivariate factorial

approaches, uncovers the underlying dimensions of a large set of variables and mathe-

matically transforms data into a smaller set of components based on intercorrelated

variables. Specific to demographic data, the social vulnerability index (SoVI) is a spatially

based descriptive tool that uses PCA to compare social vulnerability between places and

has largely focused on county-level assessments (Boruff et al. 2005; Boruff and Cutter

2007; Cutter et al. 2003; Cutter and Finch 2008). Although a CSZ-related tsunami is a

regional hazard that threatens thousands of people across three U.S. states and in British

Columbia, Canada, a traditional county-level SoVI application is inappropriate because the

majority of residents in many coastal counties are not in predicted tsunami zones; for

example, only 4% of residents in Oregon coastal counties are in CSZ-related, tsunami-

prone areas (Wood 2007).

In this article, we present an approach designed to describe the multivariate nature of

individuals living in areas prone to CSZ-related tsunami inundation and to determine

which communities have high concentrations of populations with potentially higher social

vulnerability. We adjust the SoVI approach to operate at the census-block level of geog-

raphy and concentrate only on residents in the tsunami-inundation zone, allowing us to

examine variations in the demographic sensitivity of exposed populations. Focusing on the

Oregon coast, we extend the use of the SoVI by calculating the number and percentage of

total residents in each city with tsunami-prone land that are in census blocks considered to

have higher relative social vulnerability, allowing us to comment on regional spatial

patterns in vulnerability. Within this context, we explore several spatial properties of

vulnerability including: (1) the multidimensional nature of residents in a well-defined

hazard zone that spans several communities, (2) a method to determine which communities

have elevated concentrations of higher socially vulnerable populations, and (3) insight into

whether these concentrations relate to city attributes (e.g., total number of residents in

tsunami-prone areas). Information and methods presented here further the dialogue on

understanding societal risk to tsunami hazards and can be used by emergency managers to

augment regional risk-reduction strategies with site-specific efforts that reflect local con-

ditions and needs.

2 Study area

This study focuses on the seven coastal counties of Oregon, including Clatsop, Tillamook,

Lincoln, Lane, Douglas, Coos, and Curry, and the 26 incorporated cities (based on 2005
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city-limit boundaries) within them that intersect a statewide, potential tsunami-inundation

zone (Oregon Geospatial Enterprise Office 2008) (Fig. 1). There are also 12 unincorpo-

rated towns along the Oregon coast, as delineated by census-designated place boundaries

(U.S. Census Bureau 2005) that intersect the tsunami-inundation zone. Since emergency

services and land-use planning for unincorporated towns are performed by county offices,

results related to these towns are reported at the county level.

The tsunami-inundation zone was developed by the Oregon Department of Geology and

Mineral Industries (DOGAMI) to support the implementation of a statewide ordinance

(Oregon Revised Statute 455.446-447), limiting the construction of critical facilities in

tsunami-prone areas (Olmstead 2003). Based on geologic evidence of past events and

tsunami-propagation modeling, the tsunami-inundation zone delineates the upper limit of

area expected to be covered by flood water from a tsunami caused by a magnitude 8.8 CSZ

earthquake (Priest 1995). The intent of the inundation zone of Priest (1995) was to map the

most likely CSZ tsunami flooding for the entire Oregon coast for use in building code

enforcement. Later case studies (e.g., Witter 2008; Witter et al. 2007; Zhang et al. 2007)

explored a larger range of potential CSZ tsunamis for a variety of uses, including worst-

case events for evacuation planning, but these studies did not produce an inundation zone

for the entire Oregon coast.

3 Methods

The purpose of this analysis is to understand relationships between the various types of

residents living in the Oregon tsunami-inundation zone and to identify communities with

the highest concentrations of residents that may have higher social vulnerability. Due to the

limited spatial extent of the predicted tsunami-inundation zone, we adjust the SoVI, an

exploratory factor analysis originally designed at the county level, to use census blocks,

which are the smallest geographic units used in the decennial population count of the U.S.

Census Bureau. The SoVI is based on the use of PCA to reduce a large number of census

variables into a smaller set of multivariate components where variable members of each

component exhibit similar variation across the study area, and each component explains a

certain amount of the total variance of the entire dataset.

In the original SoVI derivation, a principal component analysis was conducted for all

U.S. counties (n = 3,141) using 42 socioeconomic, demographic, and built environment

variables that were selected based on empirical post-disaster research (Cutter et al. 2003).

The county-level PCA produced eleven components that explained 76% of the variance,

where components relating to personal wealth and age were the greatest contributors to the

variance (Cutter et al. 2003). SoVI scores for each county were derived by adding PCA

loadings for each component of a county and are reported in terms of standard deviations

from the study area mean, where higher scores suggest higher social vulnerability. Since

PCA is a data-reduction technique, components and subsequent SoVI scores are dependent

on selected input variables and relevant only to the database from which the PCA was

conducted (Burton and Cutter 2008).

For our adaptation of the SoVI to the census-block level, we first selected all census

blocks from the 2000 U.S. Census (U.S. Census Bureau 2008) that are completely con-

tained within or overlap the Oregon tsunami-inundation zone. Blocks with zero population

would improperly distort a PCA and were therefore removed from the data, leaving 2,083

census blocks for analysis. Of the 42 census variables used in the original SoVI derivation,

the following 29 variables were considered to be appropriate for a block-level PCA
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analysis as it relates to the ability of individuals to evacuate tsunami-prone areas before

inundation (e.g., mobility) and to recover after a Cascadia tsunami (e.g., access to

resources):

• Age, including median age, percentage under five years of age, percentage over

65 years of age, number of nursing home residents per capita, and percentage of

population 25 or older with less than 12 years education;

• Employment, including percentage of civilian labor force participation, percentage of

civilian unemployment, percentage employed in primary industry, farming, fishing,

mining, and forestry, percentage employed in transportation, communication, and other

public utilities, and percentage employed in service occupations;

• Gender, including percentage of females, percentage of households that are female

headed, and percentage of female labor force participation;

• Housing, including average number of persons per household, percentage of occupied

housing units that are renters, percentage of housing units as mobile homes, percentage

of population living in urban areas, and percentage of population living on rural farms;

• Race and ethnicity, including percentage of population that is Black or African

American, percentage of population that is American Indian or Alaska Native,

percentage of population that is Asian, percentage of population that is Hispanic or

Latino, and percentage of population resulting from international migration; and

• Socioeconomic status, including per capita income, percentage of families earning

$100,000 or more, percentage of persons living in poverty, percentage of people

receiving Social Security benefits, median home value, and median rent.

For variables only available at the block-group level (e.g., the percentage of civilian

labor force unemployed), we assumed all blocks had the same percentage as their larger

block-group. Thirteen variables from the original SoVI derivation were excluded because

they define community attributes, such as (1) local and regional economies, including the

number of manufacturing establishments per square mile, the number of commercial

establishments per square mile, earnings of all industries per square mile, general local

government debt to revenue ratio, and value of all non-residential property, (2) medical
services, including the number of hospitals per capita and the number of physicians per

100,000 population, (3) political context, including voting records, and (4) regional pop-
ulation growth, including birth rate, the number of new housing permits, percent decennial

population change, and housing density.

All data for the 2,083 blocks were then standardized through conversion to ‘‘z scores’’

resulting in zero means and unit variances. Z-scores are derived by subtracting the mean of

the study area from the block value and then dividing this difference by the standard

deviation for the study area. The use of standardized z-scores avoids potential errors

resulting from the aggregation of variables with different means (Jones and Andrey 2007).

A PCA was then conducted on the standardized z-scores relating to 29 block-level vari-

ables. We used the PCA procedure to minimize the number of individual variables loading

high on a single component, while at the same time, increasing the differences between the

components. A varimax rotation and Kaiser Criterion (eigenvalues greater than 1) were

used for extracting significant loadings to minimize the number of variables that load high

on a single component which, in turn, increases the percentage of variation between each

component (Cutter et al. 2003). We consider component loadings for an individual census

variable to be significant at 0.5 and higher or -0.5 and lower. Once the component

loadings were derived, adjustments were made to their directionality with respect to their

known influences on vulnerability, based on the empirical literature on what increases or
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decreases social vulnerability (Cutter et al. 2003). A positive directionality was assigned to

all components believed to increase vulnerability (e.g., poverty), while a negative direc-

tionality was assigned to all components believed to decrease vulnerability (e.g., wealth)

(Cutter et al. 2003). Component scores are then added to yield a composite SoVI score for

each block. Since negative and positive components are added, resulting SoVI scores

should be considered to only approximate the collective vulnerability of a block, as they

implicitly assume that potentially unrelated disadvantages of one group in a block will

theoretically be compensated with an advantage of another group. Although compensatory

logic is assumed with metrics that use linear aggregation, more research is needed to

determine whether this is a valid assumption when assessing social vulnerability (Jones and

Andrey 2007).

In the original SoVI, component scores were equally weighted within its additive

model. This was considered appropriate at the county levels because of the lack of justi-

fication for explicit weights or well-established relationships between variables (Jones and

Andrey 2007) and because counties contained significant populations with high demo-

graphic variability. However, scale-dependent deficiencies may exist at the smaller block

level when focusing on a region where the PCA-based SoVI metric may inappropriately

focus on isolated anomalies or outliers within individual blocks and not on significant

regional trends. This could be a function of a rotated factor analytic approach, where the

varimax rotation focuses on such outliers and represents them within dimensions that

explain a miniscule amount of variance. In an effort to minimize this potential deficiency

and more accurately represent those components that contribute the most to demographic

variability within the region, we weighted each component score by its percentage of

variance explained, thereby forcing components with higher variance to contribute more to

the overall SoVI score (Piegorsch et al. 2007; Schmidtlein et al. 2008). Once all blocks had

a weighted SoVI score, a mean and standard deviation were calculated for the region and

blocks were classified in units of standard deviation from the mean (identical to the z-score

transformation described earlier). Mapping via standard deviations provides a relative

representation of which blocks deviate more from regional means (Borden et al. 2007) and

does not provide an absolute representation of vulnerability where we can say that block X

is twice as vulnerable as block Y.

In order to compare the social vulnerability of Oregon coastal cities, census blocks with

SoVI scores greater than one standard deviation from the mean were classified as having

high social vulnerability and the number of residents in these blocks was summed for each

of the 26 incorporated cities on the Oregon coast, as well as the unincorporated portions of

the 7 coastal counties. Slivers of census-block polygons that overlap administrative

boundaries and tsunami zones were omitted and final population counts are adjusted

proportionately. The number of residents from census blocks considered to have high

social vulnerability in each community was calculated to determine if these populations are

distributed uniformly across the study area and comprise similar percentages of total

population in each community. If they are not and this population is concentrated in a

subset of communities, emergency managers may wish to target these communities with

additional preparedness planning efforts.

These calculations are not meant to imply that we consider all individuals in census

blocks with high SoVI scores to have high social vulnerability; doing so would constitute

an ecological fallacy. The SoVI analysis is a relative, regional assessment based on

attribute percentages (e.g., percent of individuals living in mobile homes); therefore, not all

individuals within a census block with a high SoVI score may have high social vulnera-

bility. We calculate the number of individuals in census blocks with high SoVI scores for

Nat Hazards (2010) 52:369–389 375

123



each city only to better understand the relative magnitude of social vulnerability as it varies

among cities. Like the SoVI analysis itself, these calculations are for comparative purposes

only and should not be considered exhaustive inventories of individuals with high social

vulnerability.

A subsequent question to knowing the number of residents in each community that is in

census blocks with high SoVI scores is whether these populations correlate to certain

community attributes (e.g., city size, total number of residents in the tsunami-hazard zone).

If this is the case, then the level of social vulnerability within each community may simply

be a reflection of the size of the exposed population or other assets. In order to test whether

or not the number of residents in blocks with high SoVI scores correlate to various city

attributes, simple linear regressions were conducted where the dependent variable was the

number of individuals from census blocks considered to have high social vulnerability in

the tsunami-hazard zone of each city and the independent variables were the total number

of people, the amount of developed land, total parcel values, and total number of

employees in the tsunami-hazard zone (data from Wood 2007). These attributes are chosen

based on the data U.S. jurisdictions are encouraged to collect as they develop local hazard-

mitigation plans (Federal Emergency Management Agency 2001), a requirement to qualify

for funds under the U.S. Hazard Mitigation Grant Program in accordance with the Disaster

Mitigation Act of 2000, Public Law 106-390. The null hypothesis in each test is that no

statistically significant relationship exists.

All residents in the predicted tsunami-inundation zone can be considered vulnerable in

some way to the tsunami threat. However, our adaptation and extension of the SoVI

approach provides emergency managers with a method for determining which demo-

graphic characteristics are spatially correlated and where there are high concentrations of

more vulnerable populations. Once a census block is considered to have a high SoVI score

or a community is considered to have a high number of residents from blocks with high

SoVI scores, emergency managers can then look at individual PCA components, as well as

the original census variables, to determine where residents with potentially higher social

vulnerability may exist and why they may have higher social vulnerability relative to a

future tsunami.

4 Components of social vulnerability

A principal components analysis of populated census blocks in the Oregon tsunami-hazard

zone results in 11 broad components that explain 64.6% of the variance (Table 1; Fig. 2).

These 11 components and the census-block variables they each represent are summarized

under five overarching demographic themes—wealth and education, age and tenancy,

employment and housing, gender, and race. Since the analysis is based on z-scores (i.e.,

distance in standard deviations from the study-area mean), these components identify the

variables that exhibit the highest amount and similar trends in variability (covariance)

across the study area. The intent of this analysis is to determine which variables exhibit

similar patterns of variability across the study area, and then to discuss their relevance to

community vulnerability to CSZ-related tsunami hazards.

4.1 Wealth and education

The first component represents 9.7% of the database variance and captures four variables

that relate to wealth and education (Table 1). Variable loadings in this component suggest
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that neighborhoods do not have a wide range of income levels (i.e., individuals with high

incomes are not in the same census blocks as those living under the poverty line) and that

whether an individual has attained a high-school diploma is related to personal wealth. In

general, the Oregon tsunami-hazard zone can be characterized as having low- to middle-

income households, based on results that indicate that the percentage of families earning

$100,000 or more in this zone is approximately half the national average (5.7% compared

to 10.7%, respectively) and the percentage of individuals living in poverty here approxi-

mates the national average (12.8% compared to 12.7%, respectively). The percentage of

Table 1 Vulnerability components with Eigen values, the percentage variance explained by that compo-
nent, and the primary census variables of each component, based on a principal component analysis with a
varimax rotation

Component Eigenvalue % of
variance

Primary census variables and component loadings

1. Wealth and
education

2.814 9.704 Per capita income (0.897)

Percent families earning $100,000 or more (0.807)

Percent persons 25 or older with less than 12 years
education (-0.550)

Percent persons living in poverty (-0.614)

2. Age and tenancy 2.723 9.389 Percent under five years of age (0.673)

Average number of persons per household (0.639)

Percent renter occupied housing units (0.551)

Percent over 65 years of age (-0.697)

Median age (-0.875)

3. Urban/rural 2.310 7.965 Percent of the population living in urban areas (0.794)

Percent employed in service occupations (0.548)

Percent employed in primary industry, farming, fishing,
mining, and forestry (-0.520)

Percent rural farm populations (-0.641)

4. Housing 1.929 6.652 Percent housing units as mobile homes (0.566)

Percent employed in transportation, communication,
and other public utilities (0.553)

Median dollar value of owner occupied housing units
(-0.693)

5. Labor force
participation

1.805 6.225 Percent civilian labor force participation (0.796)

Percent social security recipients (-0.883)

6. Immigration and
female workers

1.567 5.404 Percent international migration (0.688)

Percent female labor force participation (-0.743)

7. Median rent 1.200 4.139 Median rent (0.838)

8. Females and nursing
homes

1.164 4.014 Percent females (0.672)

Nursing home residents per capita (0.612)

9. Female-headed
households

1.097 3.781 Percent female headed households (0.860)

10. Race (African-
American)

1.085 3.743 Percent Black or African American (0.798)

Percent civilian unemployment (0.506)

11. Race (Asian) 1.045 3.605 Percent Asian (0.713)

Percent American Indian or Alaska Native (-0.660)
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individuals in the tsunami-hazard zone that are older than 25 years in age and lack a high-

school diploma is slightly less than the national average (15.0% compared to 18.5%,

respectively) (Fig. 2). The reference and comparison to national averages in this and

subsequent component descriptions is meant to provide context and perspective for

demographic attributes that are highlighted by the PCA because of their high variability

within the study area.

With regards to social vulnerability, low-income households are often impacted greater

by extreme events than high-income households. Structural maintenance and mitigation

initiatives are often out of reach for low-income households, and homes may therefore

sustain greater damage following a significant event due to the nature of the housing stock

(Burton and Cutter 2008; Cochrane 1975; Morrow 1999; Wisner et al. 2004). In addition,

low-income households often have insufficient financial reserves for buying services and

materials following an event (Morrow 1999); therefore, economic recovery after a cata-

strophic tsunami may be more difficult.

4.2 Age and tenancy

The second component represents 9.4% of the study-area variance and includes five

variables that relate to age and household tenancy (Table 1). Variable loadings on this

component suggest that neighborhoods with high numbers of young children are associated

with higher numbers of people per household and higher numbers of renter-occupied

households, but not high numbers of older residents. Relative to national averages, the

study area has low percentages of children under 5 years in age (3.17% compared to 6.8%),

low percentages of renter-occupied housing (21.5% compared to 33.8%), and low numbers

of individuals per household (1.6 compared to 2.59)—all indicators of relatively lower
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Fig. 2 Demographic characteristics of Oregon residents in the predicted tsunami-inundation zone,
including study area and national averages. Demographic attributes are organized by components
determined by principal component analysis, where component percentages signify the percentage of the
overall study-area variance
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social vulnerability (Fig. 2). Although tsunami-zone percentages are low compared to

national averages, the neighborhoods with children and renter-occupied households are

considered to have higher social vulnerability because renters are less likely than home-

owners to prepare for catastrophic events (Burby et al. 2003) and families with many

dependents are likely to encounter greater obstacles when responding to an emergency due

to limited financial reserves and the coupling of work responsibilities and care for family

members (Cutter et al. 2003; H. John Heinz III Center for Science, Economics and the

Environment 2000; Morrow 1999). The percentage of individuals 65 years in age or older

in the Oregon tsunami-hazard zone is more than double the national average (25.7% and

12.4%, respectively). Research suggests the older populations may require assistance in

evacuation due to potential mobility and health issues or a reluctance to evacuate, may

require special medical equipment at shelters (McGuire et al. 2007), and are more apt to

lack social and economic resources to recover (Morrow 1999; Ngo 2003). It may be

difficult to quickly evacuate older populations from tsunami-prone areas along the Oregon

coast, given their potential health and mobility issues and the limited time between

earthquake ground-shaking and tsunami inundation. In addition, if a tsunami was to occur

during the winter months, emergency shelters may not be equipped to adequately protect

older populations from exposure to low air temperatures and high precipitation (common

during winter months on the Oregon coast), causing further health complications.

4.3 Employment and housing

The third, fourth, fifth, and seventh components collectively represent variables relating to

differences in employment and housing across the study area and indicate that certain

occupations are associated with certain landscapes and housing arrangements across the

study area (Table 1). Component 3 represents 8.0% of the study-area variance and suggests

that urban neighborhoods are associated with individuals working in service industries, while

rural areas are associated with individuals working in the natural resources, such as farming,

fishing, mining, and forestry. Component 4 represents 6.7% of the study-area variance and

suggests that neighborhoods with high percentages of mobile homes, regardless of whether

they are in urban or rural settings, contain high percentages of individuals employed in

transportation, communication, and other public utilities. Component 5 represents 6.2% of

the study-area variance and suggests an inverse relationship between individuals in the labor-

force and those receiving social security benefits. Relative to national averages, the study area

has high percentages of individuals with natural resources-related occupations (3.1% in the

study area compared to 0.9% for the nation), with service-related occupations (19.3%

compared to 14.3%), living in mobile homes (14.7% compared to 8.4%) and receiving social

security benefits (17.7% compared to 9.9%). Study-area percentages are slightly lower than

national averages for civilian labor force participation (45.8% compared to 49.3%) and for

employment in transportation, communication, and other public-utility sectors (4.0% com-

pared to 4.9%) (Fig. 2). The relatively high percentages of mobile homes, recipients of social-

security benefits, lower income service and natural-resource occupations, and relatively low

percentage of civilian labor-force participation all indicate high socially vulnerable popu-

lations along the Oregon coast.

4.4 Gender

Several components reflect gender-related variations at the census block level (Table 1).

Representing 5.4% of the study-area variance, variables in component 6 suggest areas with
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high international migration have low female participation in the labor force. Component 8

represents 4.0% of the study-area variance and indicates a correlation between the per-

centage of females and the number of nursing home residents per capita. Component 9

represents 3.8% of the study-area variance and includes a positive loading on the per-

centage of female-headed households. Past research of gender differences to natural

hazards indicates that although women tend to have higher risk perceptions, demonstrate

higher preparedness planning, and are more likely to respond to warnings than men, they

are more likely to be single parents or primary care givers and have lower incomes, fewer

financial resources, and less autonomy than males (Bateman and Edwards 2002; Enarson

and Morrow 1998; Laska and Morrow 2007). Although gender-related variations are

considered by the PCA to be moderately significant among individual census blocks in the

Oregon tsunami-hazard zone, a comparison of the study-area and national averages of the

original block variables suggest that gender-related variables are not significant issues for

the entire region. The percentage of female-headed households in the Oregon tsunami-

hazard zone is approximately one-third of the national average (3.7% and 12.0%,

respectively). The percentage of international migration in the study area is approximately

half of the national average (25.8% compared to 46.3%, respectively). Study-area averages

are similar to national averages for the percentage of females (both 51.0%) and for the

percentages of female labor force participation (47.4% and 46.9%, respectively). The

comparison of study-area averages to national averages of these gender-related demo-

graphic attributes suggest that these attributes may amplify social vulnerability within

individual census blocks, but are not dominant vulnerability trends for the entire study

area.

4.5 Race and ethnicity

The tenth and eleventh components both relate to variations based on race and ethnicity

(Table 1). Race and ethnicity influence individual sensitivity to natural hazards due to

historic patterns of racial and ethnic inequalities within the U.S. that result in minority

communities which lack resources to prepare and mitigate (Cutter et al. 2003), and are

more likely to have inferior public services, infrastructure, and building stock (Laska and

Morrow 2007), and that may be excluded from disaster planning efforts (Morrow 1999).

The tenth component represents 3.7% of the study-area variance, and variable loadings

suggest that neighborhoods with higher percentages of Black or African-American resi-

dents are associated with higher percentages of civilian unemployment. The eleventh

component represents 3.6% of the study-area variance and variable loadings suggest that

residents who classify themselves as Asian and as American Indian or Alaska Native are

not associated with the same neighborhoods. Although variations based on race at the

census-block level are considered moderately significant by the principal component

analysis, the Oregon tsunami-inundation zone does not have high racial diversity—96% of

all residents identified themselves in the 2000 Census as White, either alone or in com-

bination with one or more other races (Wood 2007). Only 0.27% of residents in the study

area classify themselves as Black or African American, compared to 12.8% for the nation.

The percentage of residents who classify themselves as Asian in the study area is low and

are one-third of the national average (1.32% compared to 4.4%, respectively). The per-

centage of residents who classify themselves as American Indian or Alaska Native is

1.24%, comparable to the national average of 1.0%. Therefore, race and ethnicity may be

amplifying components within individual census blocks and for certain individuals but are

not significant vulnerability trends for the entire region.
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5 Geographic variations in social vulnerability

The crux of social vulnerability research is the assumption that certain groups are likely to

suffer disproportionately following a damaging event due to differences in wealth, history,

and sociopolitical organization (Wisner et al. 2004). In order to effectively reduce societal

risks from catastrophic hazards, mitigation and emergency managers must understand (1)

the social characteristics that give rise to the vulnerabilities within the communities they

protect, and (2) the spatial patterns of social vulnerability across a region. Answering both

questions will help managers identify the individuals and communities that may be more

susceptible to loss or possibly lack the ability to recover quickly following a catastrophic

event. Results of the PCA analysis in the previous section help to address the first question

and suggest that although the predicted Oregon tsunami-inundation zone contains over

22,000 residents (Wood 2007), the potential impacts of a CSZ-related tsunami will likely

vary among these individuals due to observed differences in wealth, education, age, etc.,

across the study area.

Mapping via SoVI scores allows one to determine where there are potential hotspots of

social vulnerability within a community, and then determine what the primary components

at a particular location are. For example, a map of census blocks classified by SoVI

z-scores for the City of Seaside allows managers to quickly identify where potential

hotspots may exist, including the census blocks labeled A and B (Fig. 3). Blocks A and B

both contain ten individuals and may be considered to have higher social vulnerability

(SoVI scores greater than 1.0) possibly due to the high percentages of residents in these

blocks who are over 65 years in age (50% and 70%, respectively) and likely amplified by

the high percentage of females (80% in block B) and of renters (12.5% in block A).

In order to examine spatial patterns of social vulnerability between communities, we

determined how many residents in the tsunami-prone areas of each community are in

census blocks with high SoVI scores. For the purposes of this case study, we define high

social vulnerability populations as those residing in census blocks with transformed SoVI

z-scores greater than 1.0 (i.e., greater than one standard deviation from the regional mean).

Overall, there are 2,044 individuals in census blocks who are considered to have high

social vulnerability, representing 9% of all residents in the Oregon tsunami-hazard zone.

The number of residents in the tsunami-hazard zone from blocks considered to have high

social vulnerability is not constant among Oregon communities, as 76% of these indi-

viduals come from only four incorporated cities (Seaside, Lincoln City, Waldport, and

Warrenton) and the unincorporated portions of two counties (Tillamook and Coos)

(Fig. 4a). At the community level, there is no discernible geographic trend for where these

populations are located, as high concentrations occur on the northern (e.g., City of Sea-

side), central (e.g., City of Lincoln City), and southern (e.g., unincorporated portions of

Coos County) sections of the Oregon coast.

There is also no apparent relationship between the number of residents considered to

have high social vulnerability (Fig. 4a) and the percentage they represent of the total

number of residents in the tsunami-hazard zone (Fig. 4b). For example, the City of Seaside

has the highest number of residents considered to have higher social vulnerability (422),

but this group only represents 9% of the in-hazard population. Similar communities with

high amounts but low percentages of the total in-hazard population include the cities of

Warrenton, Lincoln City, and Waldport and the unincorporated portions of Clatsop, Til-

lamook, and Coos counties. In these communities, emergency managers may overlook

these special needs populations that are large in numbers, but represent a small fraction of

the total population that could be impacted by a tsunami. Conversely, there are several
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communities, such as the cities of Astoria, Nehalem, Wheeler, Toledo, and Bandon, which

have low numbers of residents from blocks with high SoVI scores, but these few indi-

viduals represent high percentages of the in-hazard population (Fig. 4). In these

communities, emergency managers will be assisting small, but disproportionately highly

vulnerable, populations.

Simple linear regressions were conducted to determine if the number of individuals

from blocks considered having higher social vulnerability in each community correlates to

certain city-level attributes (defined in Wood 2007). The dependent variable was the
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Fig. 3 Map of census blocks, classified by SoVI scores, in the City of Seaside, Oregon. SoVI scores are
classified in standard deviations from the mean. Blocks labeled A and B in the figure are considered to have
higher relative social vulnerability than other blocks in the study area and are further discussed in the text

382 Nat Hazards (2010) 52:369–389

123



number of residents from census blocks with SoVI scores greater than 1.0 and the inde-

pendent variables were the number of residents, the amount of developed land, total parcel

values, and the number of employees in the predicted tsunami-inundation zone (all from

Wood 2007). All relationships are statistically significant (all have p \ 0.01) but are not

particularly strong based on moderate explained variance (r2) values, including total

amount of developed land (r2 = 0.594), total number of residents (r2 = 0.584), total

number of employees (r2 = 0.409), and total amount of parcel values (r2 = 0.390) in the

tsunami-inundation zone. For example, Fig. 5 graphically portrays how the number of

individuals in a city’s predicted tsunami-inundation zone is not a strong indicator of the

number of individuals that can be considered to have high social vulnerability. Therefore,

these city attributes cannot be considered a strong indicator on their own for the number of

individuals in blocks who may have high social vulnerability in a community in this study

area. These findings support the need for emergency managers to determine local
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conditions and needs, using methods like those presented, when developing risk-reduction

strategies and not to implement generic strategies with the assumption that all exposed

populations in different cities along the Oregon coast have similar demographic

compositions.

6 Use and limitations of the SoVI approach

The SoVI is designed to be a descriptive measure of social vulnerability to hazards based

on exploratory factor analysis of demographic data. As demonstrated in the previous

sections, the development and mapping of relative SoVI z-scores at the census-block level

provides emergency managers with a mechanism for characterizing multivariate aspects of

social vulnerability and for determining where local outliers exist across a region. The use

of census blocks (the smallest geographic unit used by the U.S. Census Bureau) in this

analysis may also minimize potential issues of ecological fallacy, where incorrect infer-

ences about individuals are based on characteristics of the larger group to which they

belong (Jones and Andrey 2007). While the potential for ecological fallacy remains,

populations may become more homogenous as census units get smaller and variables that

characterize average attributes of a population in a census block (e.g., per capita income,

median rent, and number of persons per household) may better reflect all members of that

census block than average attributes summarized at larger census units (e.g., tract or

county).

Although SoVI scores can help emergency managers to identify outliers and their

location across a landscape, they should not be construed as a complete characterization of

social vulnerability in an area to a specific hazard. A principal component analysis may not

always capture the dominant variables contributing to vulnerability, but rather those that

best explain the variation in the input data (Jones and Andrey 2007). By normalizing raw

census data to z-scores, the SoVI approach ignores differences in means among the original

data and therefore focuses on variances, not regional conditions, in its relative assessment

of social vulnerability across a study area. All variables, regardless of their original means
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and variance, are transformed to have zero means and a standard deviation of one. For

example, if census block A has a value of 15% for the percentage of households that are

renters (mean = 10%, standard deviations = 1.5%) and census block B has a value of

95% for the percentage of residents over 65 years in age (mean = 90%, standard devia-

tions = 1.5%), then the two blocks will have identical z-scores (3.33) for the different

variables (i.e., 15 minus 10 divided by 1.5 equals 95 minus 90 divided 1.5). For these two

variables, z-scores and subsequent SoVI scores may have similar patterns of data vari-

ability across a landscape, even though the second variable has a much higher mean before

normalization. Therefore, the SoVI approach identifies variations in relative social vul-

nerability across a study and is not an exhaustive prioritized inventory of the primary

causes of social vulnerability.

Since z-scores reflect the distance in standard deviations from the study-area mean, the

distributions of two variables with drastically different standard deviations may also appear

similar after their conversion to z-scores. For example, Fig. 6a shows a frequency histo-

gram for the percentage of individuals in census blocks that are considered to be living in

poverty (mean = 12.8%, standard deviations = 6.5%) and the percentage of individuals

who are 65 years in age or greater (mean = 25.7%, standard deviations = 25.9%).

Although the percentage of individuals who are 65 years in age or greater has a higher

mean and a much greater range and distribution than the percentage of individuals living in

poverty among the 2,086 census blocks (Fig. 2), its distribution of z-scores resembles those

for the percentage of individuals living in poverty (Fig. 6b). Therefore, if emergency

managers rely solely on results related to z-scores and do not also look at original data

distributions, they may fail to realize that the large number of older residents may be a

larger regional vulnerability issue than the smaller number of individuals living in poverty

on the Oregon coast (Fig. 2).

The ability to use SoVI scores to identify hotspots of social vulnerability is immediately

appealing to local managers who are responsible for site-specific risk-reduction efforts.

State or regional emergency managers may want to first focus on variables that may not

exhibit high variance, but that are consistently high across the region (especially those that

are significantly higher than state and national averages), and then use block-level SoVI

scores to find outliers. For example, Component 1 in our case study explained 9.7% of the
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variance and included variables relating wealth and education (e.g., persons living in

poverty, persons 25 years in age or older with less than 12 years of education, and families

earning $100,000 or more), yet these variables all have means less than 15% of the

population and are fairly close to national averages with standard deviations of approxi-

mately 5% (Fig. 2). Other variables, such as the percent of individuals over 65 years in age

(Component 2), the percent of housing units that are mobile homes (Component 4), and the

percent of individuals receiving social security benefits (Component 5), have higher

regional means and standard deviations than those in Component One and these means

double national averages (Table 1). However, these variables load on components that

explain less variance, and therefore have less weight, in final SoVI scores (Fig. 6).

Therefore, a vulnerability analysis that relies only on SoVI will identify variables with high

variance but may miss the aspects of demographic sensitivity that may show less variance

but high initial percentages. For our case study of social vulnerability to tsunamis on the

Oregon coast, these regional sensitivities include high percentages of the population that

are over 65 years in age, are employed in primary industry and service occupations, live in

mobile homes, or receive social security benefits. In each of these cases, study-area per-

centages of these variables are double the national averages, but these variables contribute

less than other variables to overall database variance and weights to SoVI scores (Fig. 2).

Place-based context is considered an important element of understanding community

vulnerability (Jones and Andrey 2007). In order to appreciate and characterize social

vulnerability to a hazard, emergency managers should, therefore, calculate block-level

SoVI scores and interpret them within the context of the original data and relative to the

hazard in question. In doing so, emergency managers can determine regional conditions,

identify site-specific outliers at the block level and where they exist across a region, and

then determine the individual variables that are contributing to social vulnerability at that

location. Once emergency managers have targeted highly vulnerable populations with

additional risk-reduction strategies, they could work with social-service providers to

address the non-hazard, socioeconomic conditions that create this vulnerability (e.g.,

poverty and lack of education). Methods and analysis presented here can be used not only

for identifying immediate response needs to a specific threat (e.g., older populations

needing assistance in evacuating tsunami-prone areas) but also for non-hazard issues of

resource access (e.g., populations living in poverty needing assistance to recover) germane

to any catastrophic event.

7 Conclusions

The impacts from a CSZ-related tsunami will be expressed differentially across commu-

nities along the Oregon coast. Certain individuals and groups within each community are

likely to suffer disproportionately due to differences in socioeconomic conditions and other

demographic attributes unrelated to the natural hazard. Emergency-management officials

must understand not only the physical aspects of the tsunami threat in which currently a

large body of knowledge exists, but also the oftentimes undocumented, place-based

characteristics of the social environment. Of utmost significance relative to Cascadia

tsunamis is the ability of emergency managers to identify those areas more susceptible to

loss and those hosting populations that may need assistance in evacuating tsunami-prone

areas or that lack in the ability to recover quickly following an event. Results presented

here demonstrate that social vulnerability to Cascadia tsunami manifests itself differently

throughout the study area and that the number of individuals in census blocks with high
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social vulnerability is not consistent across 26 cities. Methods presented here provide

emergency managers with a process for characterizing the multivariate nature of residents

and for identifying which communities have significant numbers of residents that may have

high relative social vulnerability. This information provides emergency managers with the

means to depart from one-size-fits-all mitigation strategies that inadequately address dif-

ferences in social context and, instead, to develop strategies tailored to local conditions and

needs.
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