Probabilistic infrastructure damage, debris forecasting, and community resilience analysis for CSZ earthquake and tsunami applied to Seaside, Oregon

Daniel Cox (dan.cox@oregonstate.edu)

Hyoungsu Park (UH), Mohamad Shafiqual Alam, Sabarenthinam Kameshwar (LSU), Dylan Sanderson Andre Barbosa, John van de Lindt (CSU)

Center for Risk-Based Community Resilience Planning A NIST-funded Center of Excellence

Topics:

- PTHA, PSTHA -- hazard
- PSTDA -- damage
- Resilience modeling
 Debris modeling

1) Inversion model results

School of Civil and Construction Engineering

4) Applying as input sub-faults in model

Park, H. and Cox, D.T. (2016) "Probabilistic Assessment of Near-field Tsunami Hazards: Inundation Depth, Velocity, Momentum Flux, Arrival Time, and Duration Applied to Seaside, Oregon," *Coastal Engineering*, 117, 79-96

Nested models for tsunami generation, propagation, inundation

- ComMIT/MOST(NOAA) A & B-Grid - COULWAVE Only C-Grid

Grid	Mesh number / size	Models
A-Grid	400 × 400 / 1 min	ComMIT
B-Grid	800 × 800 / 3 sec	ComMIT
C-Grid	416 × 390 / 24 m	COULWAVE

- Following default setup for each models
- Default friction, n = 0.03.
- Perhaps a bit too coarse...

Logic tree model

Calculating annual exceedance probability (AEP) of IMs

Hazards map at Seaside, OR

Hazards map at Seaside, OR

Hazards map at Seaside, OR

Hazards map at Seaside, OR

Example: Duration time (T_D)

Joint Distribution of Tsunami Intensity Measures?

Correlation of maximum flood depth with other IMs

PTHA Comparison for Seaside, Oregon

Much more work needed for PTHA, joint PSTHA, joint IMs, spatial correlations, . . .!!

Tsunami Damage Assessment Description of the Built Environment

School of Civil and Construction Engineering

- Description of buildings by construction material, number of floors, date (seismic code)
- Building data inferred from tax data and verified by Google Street view and Rapid Visual Screening for some buildings

Seaside Building Layers

Parcel-level description of the buildings

Park H, MS Alam, DT Cox, AR Barbosa, JW van de Lindt (2019) "Probabilistic seismic and tsunami damage analysis (PSTDA) for the Cascadia Subduction Zone applied to Seaside, Oregon," International Journal of Disaster Risk Reduction, 35, 101076, doi.org/10.1016/j.ijdrr.2019.101076

Critical (lifeline) infrastructure networks

Fragility curves (Suppasri et al., 2013) for collapse damage

Photo taken by Hyoungsu Park, at Seaside Field trip (July, 14, 2015)

School of Civil and Construction Engineering

Probability damage at AEP = 0.001 (~1,000 year event) at CSZ with S2013 model (h_{max} , Collapse DS)

School of Civil and Construction Engineering

Estimate of Direct Losses

Dollar Loss = Dollar value of building × Damage ratio

Economic Risk for Building Damages in Seaside

Sanderson, D, S Kameshwar, N Rosenheim, DT Cox "Deaggregation of multi-hazard damages, losses, risks, and connectivity: An application to the joint seismic-tsunami hazard at Seaside, Oregon," *Natural Hazards*, (submitted, 8/2020).

Economic Risk for Different Infrastructure Networks in Seaside

Sanderson, D, S Kameshwar, N Rosenheim, DT Cox "Deaggregation of multi-hazard damages, losses, risks, and connectivity: An application to the joint seismic-tsunami hazard at Seaside, Oregon," *Natural Hazards*, (submitted, 8/2020).

Open Source Platform for Community Resilience Modeling NIST-funded CoE https://incore.ncsa.illinois.edu/

Seaside Jupyter Notebooks

Finalized notebooks

- Seaside Example Notebook 1: Multi-Hazard Building Damage
 - Authors: Dylan Sanderson and Gowtham Naraharisetty
 - o Date: Dec., 2019
 - Description: Demonstrates pyIncore's multi-hazard building damage analysis module
- Spatial Bayesian Network:
 - Authors: Dylan Sanderson, Dan Cox, and Gowtham Naraharisetty
 - o Date: Jul., 2020
 - Description: Used to access and run a spatially-explicit Bayesian network that was populated using pyIncore

In progress notebooks

- Seaside Building Optimization
 - Authors: Tarun Adluri and Dylan Sanderson
 - Description: Multi-objective optimization of building mitigation strategies for Seaside.

💢 Jupyter	Notebook1_BuildingDamageOSU Last Checkpoint: 4 hours ago (autosaved)
File Edit	View Insert Cell Kernel Widgets Help Trusted Python 3 O
🖹 🕇 🕅 🍕	
	Mapping Output
	This notebook creates interactive maps using "iovleafiet". For better rendering maps, use iovleafiet v0.10.5
In [4]:	path_to_lug_inventory = os.path.join('output', 'notebook_BuildingDamage', 'building_mapping') path_to_bldg_inventory = os.path.join('bockend', 'building_local', 'seasid_buildings_4326.shp') bldg_inventory = gpd.read_file(path_to_bldg_inventory) <i># local building shapefile</i>
	<pre>damage_ratio_dict = {'None': 0,</pre>
	'Extensive': 0.555, 'Complete': 0.9}
	<pre>m = mcb(client)</pre>
	<pre>m.set_parameter("buildings", bldg_inventory) m.set_parameter("path_to_dsta", path_to_output_data) m.set_parameter("string_to_num_dict", damage_ratio_dict) m = m.run() # generating maps m # showing maps in notebook</pre>
	termine big_Cumulative_dmg_1000yr_results.csv dmg bading: bldg_Cumulative_dmg_500yr_results.csv dmg bading: bldg_Cumulative_dmg_500yr_results.csv dmg
In []:	

NIST Center for Risk-Based Community Resilience Planning

Combining Infrastructure Damage and Loss to Social Vulnerability

Seaside, OR: Race, Ethnicity, Tenure, Vacancy

Clatsop County, OR Population

Housing Unit Inventory + Building Inventory

Rosenheim, N., Guidotti, R., Gardoni, P., & Peacock, W. G. (2019). Integration of detailed household and housing unit characteristic data with critical infrastructure for post-hazard resilience modeling. *Sustainable and Resilient Infrastructure*, 1-17. <u>https://doi.org/10.1080/23789689.2019.1681821</u> Guidotti, R., Gardoni, P., & Rosenheim, N. (2019). Integration of physical infrastructure and social systems in communities' reliability and resilience analysis. *Reliability Engineering & System Safety*, 185, 476-492. <u>https://doi.org/10.1016/j.ress.2019.01.008</u>

School of Civil and Construction Engineering

1. Deaggregation of multi-hazard damages, losses, risks, and connectivity: An application to the joint seismic-tsunami hazards at Seaside, Oregon

2. A spatially explicit decision support framework for parcel- and community-level risk and resilience assessment using Bayesian networks

Establishing community resilience objectives

Oregon Resilience Plan (2013)

- = moderate target
- G

Y

= easier target

Comparison of Target	States	and E	stimate	ed Time	for Re	covery				
Infrastructure Facilities	Event Occurs	0 – 24 hours	1–3 days	3 – 7 days	1-4 weeks	1 – 3 months	3 – 6 months	6 – 12 months	1–3 years	34 years
Central Oregon Zone	-									
OREGON STATE HIGHWAY SYSTEM										
State Highway System - Tier 1 SLR ¹⁾			R	Y	G			s	х	
Roadways			R	Y	G/S		х			
Bridges			R	Y	G		s	х		
Landslides			R	Y	G			S	х	
State Highway System - Tier 2 SLR			R		Y	G			S	х
Roadways			R		Y	G/S		Х		
Bridges			R		Y	G		S	Х	
Landslides			R		Y	G			S	х
State Highway System - Tier 3 SLR				R		Y	G		S	Х
Roadways				R		Y	G/S		х	
Bridges				R		Y	G		S	Х
Landslides				R		Y	G		S	х
State Highway System - Other Routes					R		Y	G	S	Х
Roadways					R		Y	G	Х	
Bridges					R		Y	G	S	Х
Landslides					R		Y	G	S	Х
AIRPORTS & AIR TRANSPORTATION										
Tier I - Oregon Airports System										
Redmond Municipal Roberts Field Airport - FEMA		R	s		Y	G	Х			
Klamath Falls Airport		R	S		Y	G	Х			
FAA Facility			R	Y	G					
OREGON RAIL TRANSPORTATION										
UPRR										
CA/OR State Line to Bieber Line Jct. (Klamath Falls)			Y	G	S	Х				
UPRR CA/OR State Line to Bieber Line Jct. (Klamath Falls)			Y	G	s	x				

School of Civil and Construction Engineering

Decision Support Framework

- **Community-specified targets** \bullet
- Targets are MRI-specific
- Targets are Infrastructure-specific \bullet

······································	-			mm						
	Return	Restoration time (in days)								
Infrastructure	period (years)	0-3	3-7	7-15	15-30	30-90	90-180	180-360	360-720	720- 1080
Buildings	100									
Buildings	250									
Buildings	500									
Buildings	1000									
Buildings	2500									
Buildings	5000									
Buildings	10000									
Transportation	100									
Transportation	250									
Transportation	500									
Transportation	1000									
Transportation	2500									
Transportation	5000									
Transportation	10000									
Water	100									
Water	250									
Water	500									
Water	1000									
Water	2500									
Water	5000									
Water	10000									
EPN	100									
EPN	250									
EPN	500									
EPN	1000									
EPN	2500									
EPN	5000									
EPN	10000									

Example: Performance assessment of water system

- Return period events: 100, 250, 500, 1000, 2500, 5000, 10000 years
- EQ and tsunami, and combined damage estimation
 - Hazus fragility estimates for treatment plant, pumping station, and water pipes
 - Economic loss
 - Restoration time
- Performance: number of buildings connected to treatment plant and nearest pumping station – network analysis
- Monte Carlo Simulations propagate uncertainties in component capacities and restoration time

Restoration Performance of Water System (Hazus restoration functions)

- connectivity only
- no water quality
- no water pressure
- no consideration of regional scale disaster

Restoration of infrastructure systems

(1,000-year event, seismic + tsunami)

Restoration of all systems as a function of recurrence interval

School of Civil and Construction Engineering

- Bayesian network to assess community resilience
- Considered four infrastructure types:
 - Buildings
 - Electric Power Network
 - Transportation Network
 - Water Supply Network
- Connectivity among infrastructure
- Joint probability of meeting community targets for robustness and rapidity
- Can explore mitigation options

Fig. 11. Schematic representation of a BN for an infrastructure system.

Kameshwar, S., Cox, D., Barbosa, A., Farokhnia, K., Park, H., Alam, M., and van de Lindt, J. (2019). Probabilistic decision-support framework for community resilience: Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network. *Reliability Engineering and System Safety*, 191. <u>https://doi.org/10.1016/j.ress.2019.106568</u>

Model output:

Probability of achieving community resilience goals

- Combined EQ+Tsu
- Moderate targets
- "Resilience" depends on recurrence interval, goals

How to increase resilience? Expected benefits of mitigation measures to improve community resilience can depend on community targets.

Kameshwar, S., Cox, D., Barbosa, A., Farokhnia, K., Park, H., Alam, M., and van de Lindt, J. (2019). Probabilistic decision-support framework for community resilience: Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network. *Reliability Engineering and System Safety*, 191. <u>https://doi.org/10.1016/j.ress.2019.106568</u>

School of Civil and Construction Engineering

Tsunami Debris

"Over the past 5 years, debris removal accounted for approximately 27% of disaster recovery costs" -- FEMA 325 (2007)

Anthropogenic

Hazards and Disaster Debris types

Natural

Debris Forecasting

- 1. What is it?
- 2. How much is it?

3. Where is it?

From FEMA 325, Figure 6.2 – Typical Debris Streams for Different Types of Disasters

						/ unun op	l		
A.M. 1		1. 1.1.1.1	The second						
	Vegetative	Soil, Sand, Mud	Putrescence	Construction & Demolition	House hold Hazardous Waste (HHW)	White Goods	Personal Property	Vehicles + Vessels	Hazardous Waste
Hurricane	x	x	x	x	x	x	x	x	x
Tsunami	x	x	x	x	x	x	x	x	x
Flood	x	x	x	x	x	x	x	x	x
Tornadoes	x		x	x	x	x	x	x	x
Earthquake		x		x	x	x	x		
WUI Fire	x	x			x	x	x		
Ice Storm	x				x				

Focus on critical facilities and lifelines

Debris Forecast Model: Quantification of debris at a single building

Based on Hazus-MH 2.1 (Earthquake)

EDF for structural damage

$$EDF_{S} = \int \left(\sum_{i}^{4} P_{S}(i) \cdot DF_{S}(i)\right) f_{S}(r) dr$$

EDF for non-structural damage

$$EDF_{NS} = \int \left(\sum_{i}^{4} P_{NS}(i) \cdot DF_{NS}(i)\right) f_{NS}(r) dr \qquad f_{S}$$

- EDF_S Expected debris fraction from structural damage Four damage states (slight, moderate, extensive and complete) $P_{S}(i)$ Probability of structural damage at the 'i' damage state. $DF_{S}(i)$ Structural debris fraction (percent) of unit weight at the 'i' damage states. Structural debris fraction (r)(percent) of unit weight at the 'i' damage states.
- NS Subscription for non-structural damage variables.

Distribution of expected debris volume (m³) per unit area (hectare) for 1000-year event without advection. (a) Volume of total debris from EQ+TSU, (b) Volume of buoyant debris only from EQ+TSU.

Advection of buoyant debris from PSTDA

	—

Thresholds:

Park H, DT Cox (2019) "Effects of advection on forecasting construction debris for vulnerability assessment under multi-hazard earthquake and tsunami," Coastal Engineering 153, 103541, doi.org/10.1016/j.coastaleng.2019.103541

Volume of Building Debris in Seaside Generated by CSZ Earthquake and Tsunami

Volume of Building Debris Generated in Seaside by CSZ Earthquake and Tsunami <u>with Transport</u>

Post-event Community Connectivity and Access to Critical Facilities

Table 1

Likelihood of accessing hospitals and the high school immediately after tsunami events.

(a) Connectivity to hospital								
Return period	AA #2	AA #5	AA #6	AA #7	AA #8			
250	0.84	1.00	1.00	1.00	0.99			
500	0.67	1.00	1.00	1.00	0.82			
1000	0.00	0.00	0.00	0.00	0.00			
2500	0.00	0.00	1.00	0.00	0.00			
5000	0.00	0.00	0.00	0.00	0.00			
10000	0.00	0.00	0.00	0.00	0.00			
	(b) (Connectivit	y to high so	:hool				
Return period	(b) (AA #2	AA #5	y to high so AA #6	AA #7	AA #8			
Return period 250	(b) (AA #2 0.83	AA #5 0.99	y to high so AA #6 0.99	hool AA #7 0.99	AA #8			
Return period 250 500	(b) (AA #2 0.83 0.63	AA #5 0.99 0.95	y to high so AA #6 0.99 0.95	AA #7 0.99 0.95	AA #8 1.00 0.86			
Return period 250 500 1000	(b) (AA #2 0.83 0.63 0.10	AA #5 0.99 0.95 0.00	y to high so AA #6 0.99 0.95 0.34	AA #7 0.99 0.95 0.02	AA #8 1.00 0.86 0.32			
Return period 250 500 1000 2500	(b) (AA #2 0.83 0.63 0.10 0.01	AA #5 0.99 0.95 0.00 0.00	y to high so AA #6 0.99 0.95 0.34 0.05	hool AA #7 0.99 0.95 0.02 0.00	AA #8 1.00 0.86 0.32 0.04			
Return period 250 500 1000 2500 5000	(b) (AA #2 0.83 0.63 0.10 0.01 0.00	AA #5 0.99 0.95 0.00 0.00 0.00 0.00	y to high so AA #6 0.99 0.95 0.34 0.05 0.00	hool AA #7 0.99 0.95 0.02 0.00 0.00	AA #8 1.00 0.86 0.32 0.04 0.04			

Kameshwar S, H Park, DT Cox, AR Barbosa (2021) "Effect of disaster debris, flood duration, and bridge damage on immediate post-tsunami connectivity," Int. J. Disaster Risk Reduction, https://doi.org/10.1016/j.ijdrr.2021.102119.

School of Civil and Construction Engineering

Park HS, MJ Koh, DT Cox, MS Alam, S Shin, (2021) "Experimental study of debris transport driven by a tsunami-like wave: Application for non-uniform density groups and obstacles," *Coastal Engineering*, 166, doi.org/10.1016/j.coastaleng.2021.103867

Future Work for Debris

- Debris and subsequent damage
- Other Debris Sources vegetation; vehicles
- Non-buoyant debris buildings; sand, rock
- How to generalize the results?
 - Local topography and land use to screen for 'hot spots'?
- Debris clearance/removal
- Seismic debris and tsunami evacuation
- Verification and validation

Thank you!

Daniel Cox (dan.cox@oregonstate.edu)

Center for Risk-Based Community Resilience Planning A NIST-funded Center of Excellence