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East-Coast Meteotsunami hazard
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* Mostly caused by squall lines and
derechos moving onto the shelf,
towards the E-SE sector

* Frequent in summer (Bluestein, 1993)

* Ex: Radar for June 13, 2013 EC
meteotsunami => 2 m waves off of NJ

NEXRAD 1KM MOSAIC 13 JUN 13
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East-Coast Meteotsunami hazard
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[Geist et al., 2014: June 13, 2013 MT modeling]

. . 4_:(\&% __A\_Airpressure disturbance
* MT generation mechanisms: Vo= Harbor resonance
* Proudman (1929) resonance (U ~ (gh)/?) o ERUIBISATRGE 2 SR g
* Edge waves (Greenspan, 1956; like SMFs)
* Shelf resonance (Monserrat et al., 2006)
* Shelf edge reflection (Rabinovitch, 2003) R

* Harbor resonance (20+ for 06/13/18 MT) = sl shelf resomance
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Deep water




East-Coast Meteotsunami hazard
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[Geist et al., 2014: June 13, 2013 MT modeling]
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e MT generation mechanisms: Use=\gh ——
* Proudman (1929) resonance (U ~ (gh)/?): relidiibiinlelollr iaic B 4

Inlet/harbor

An~ Ap U t/w

with Ap the pressure discontinuity and w the
pressure front width (Hibiya et al., 1982)

Deep water

Greenspan resonance
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East-Coast Meteotsunami hazard

e MT generation mechanisms:

* Proudman (1929) resonance (U ~ (gh)Y/2): => Depth h (meter) and celerity ¢ (m/s)
An~ Ap U t/w => Typical U = [7.2 - 29.6] (m/s) (95% CL)
with Ap the pressure discontinuity and w the Typical Ap = [0 -5.2] (hPa) (95% CL)
pressure front width (Hibiya et al., 1982) [Geist et al., 2014]
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East-Coast tsunami hazard assessment (NTHMP)

. Madeira Tore EE  Extreme sources (PMTs) (2010-...):
' -> LSB-M9 far-field seismic source : repeat of

Lisbon 1755 [Barkan et al., 2008]

Cumbre \}iejfg.
-> PRT-M9 far-field seismic source in PRT:
600 x 150 km (12 SIFT sources; 12 m slip;
600 yr of full (orthogonal) convergence)
[Knight, 2006; Grilli et al., 2010]

Puerto Rico Trench

-> CVV Far-field flank collapse of CVV (80 to
450 km?3 volume; return period (?) perhaps
1,000-100,000 yrs.

[Abadie et al., 2012; Tehranirad et al., 2015]

-> near-field SMFs on continental slope/margin: assumed to be rigid slumps with Currituck slide
characteristics (proxies; 165 km3 volume) [Grilli et al., 2015, 2017; Schambach et al., 2018]
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Far-field: Cumbre Vieja 450 km3 flank collapse (NTHMP)

[Abadie et al., 2012; Tehranirad et al., 2015]

-> 3D-NS simulation up o0 20 min (m)

RSI



Cumbre Vieja 450 km?3 flank collapse source (NTHMP)

[Abadie et al., 2012; Tehranirad et al., 2015]
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-> 2D-FUNWAVE-TVD transoceanic

simulations in nested grids (m)
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Near-field: Hudson River Canyon 165 km3 SMF

[Grilli et al., 2015, 2017; Schambach et al., 2018]
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East-Coast tsunami hazard assessment [~~~ =5 |
(NTHMP; 2010-...)

* Inundation mapping from PMT sources in Atlantic Ocean: - = = | -

——— SC o

el R S . =>Volcanic collapse (La Palma CVV)

L A Ty | =>Submarine Mass Failures (SMFs; -
R i o off the continental shelf)

=> Coseismic (LSB, PRT)
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East-Coast Meteotsunami hazard for NTHMP mapping

* Geist et al. (2014):
* Statistics of 2000-2013 EC events caused by squall lines/derechos
 Validation of modeling for 06/13/13 MT (a few max. elevations at tide gages)
* Monte Carlo simulations => hazard curves: n,,, = f(T,) at tide gages
* Here, based on Dusek et al.’s (2018) EC tide gage analysis from 1996-2018:
» Select 10 squall lines/derechos events with Ap > 0.9 hPa at at least 4 tide gages
* Use radar/tide gages to infer squall geometry, direction and speed |Vilibic et al., 2008]
* Parameterize as moving Gaussian pressure dist. => modeling with FUNWAVE-TVD

Date Max Pressure Jump (mb) | Number of Gauges | Storm Length(kilometers) | Storm Velocity (meters/sec) | Max Wave Height (meters) Area
1 | 06/13/2013 3.7 16 515 26 0.58 Mid-Atlantic Coast
2 | 06/30/2012 4.1 7 500 23 0.41 Mid-Atlantic Coast
3 | 12/08/2011 3.6 20 400 23 0.79 Mid-Atlantic Coast
4 | 3/02/2009 4.9 8 1042 31 0.75 East Coast
5 | 07/02/2012 4.5 7 900 17 0.51 South Atlantic Coast
6 |04/11/2013 3.8 7 561 23 0.42 Mid-Atlantic Coast
7 | 02/05/2016 3.6 4 1521 29 0.59 East Coast
8 | 01/16/2016 3.5 5 270 22 0.41 Mid-Atlantic Coast
9 | 06/09/2011 3.3 6 750 22 0.31 New England
10 | 02/03/2015 2.5 7 514 8 0.46 East Coast

[HI

UNIVERSITY

OF RHODE ISLAND




East-Coast Meteotsunami hazard for NTHMP mapping

* Here, based on Dusek et al.’s (2018) EC tide gage analysis from 1996-2018:
» Select 10 squall lines/derechos events with Ap > 0.9 hPa at at least 4 tide gages
» Use radar/tide gages to find squall geometry, direction and speed |Vilibic et al., 2008]
* Parameterize as moving Gaussian pressure dist. => modeling with FUNWAVE-TVD

777777

=>use Ap |
from gauge
records
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East-Coast Meteotsunami hazard for NTHMP mapping

24 * Here, based on Dusek et al.’s (2018) EC tide gage analysis from 1996-2018:

» Select 10 squall lines/derechos events with Ap > 0.9 hPa at at least 4 tide gages

» Use radar/tide gages to find squall geometry, direction and speed |Vilibic et al., 2008]
* Parameterize as moving Gaussian pressure dist. => modeling with FUNWAVE-TVD

—35

\{S\ 130
=> use Ap
from gauge
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East-Coast Meteotsunami hazard for NTHMP mapping

, * Example of 06/13/13 MT:

Ap = 6 hPa (10 by 463 km), U = 26 m/s, dir. 25 deg.
modeling with FUNWAVE-TVD : 500x500 m grid, with dispersion, 11h

Atlantic City, NJ
T T T

0.2

Modeled
Observed

0.15

=> modeling

7 (m)
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East-Coast Meteotsunami hazard for NTHMP mapping

7« * Example of 06/13/13 MT:
; e Ap=6hPa (10 by 463 km), U =26 m/s, dir. 25 deg.
* modeling with FUNWAVE-TVD : 500x500 m grid, with dispersion, 11h

Montauk, NY
T T

0.1

=> modeling " I
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East-Coast Meteotsunami hazard for NTHMP mapping

24 ¢ Example of 06/13/13 MT:
* Ap=6hPa (10 by 463 km), U =26 m/s, dir. 25 deg.
* modeling with FUNWAVE-TVD : 500x500 m grid, with dispersion, 11h

Woods Hole, MA
T T

0.2

0.15
0.1

0.05
. F\/\/V\f\ N\
% vy

-0.05

=> modeling

7 (m)
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East-Coast Meteotsunami hazard for NTHMP mapping

24 * Example of 06/13/13 MT:
* Ap =6 hPa (10 by 463 km), sensitivity: U = 23-29 m/s, dir. 25 deg.
* Modeling with FUNWAVE-TVD : 500x500 m grid, with dispersion, 11h

0.2 . . ; oty iy . . .
£ OM\W ]
_02 1 1 1 1 | 1 I 1 1
14 15 16 17 18 19 20 21 22 23 24
=> Atlantic oo Velody=26mis
.
City €, |
Gauge
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0.2 T T T ‘Velocﬂy‘=23 m/s\ T T T
o ... . SR
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t (hr)
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East-Coast Meteotsunami hazard for NTHMP mapping

24 ¢ Example of 06/13/13 MT:
* Ap =6 hPa (10 by 463 km), sensitivity: U =26 m/s, dir. 335, 0, 25 deg.
* Modeling with FUNWAVE-TVD : 500x500 m grid, with dispersion, 11h

0.2

g OA——/\/—/\/\N\/\/\,\/\/

-02 1 1 1 1 1 1 1 1 1
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=> Atlantic 62 E— 1
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East-Coast Meteotsunami hazard for NTHMP mapping

24 * Example of 06/13/13 MT:
 Ap =6 hPa (10 by 463 km), sensitivity: U = 26 m/s, dir. 25 deg.
* Modeling with FUNWAVE-TVD : 500x500 m grid, with/without dispersion, 11h

observed ‘ .‘
Dispersion False
Dispersion True

0.2

0.15

=> Atlantic “
City 005
Gauge

7 (M)

0

-0.05

=01

-0.15
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East-Coast Meteotsunami hazard conclusions

» Similar simulations were performed for 10 selected MT (Woodruff, 2018; MS)

* Overall good agreement at tide gages similar to 06/13/13 event

* Main features are well captured (height and period) with small underprediction
of elevations likely due to the coarse nearshore grid

* Frequency dispersion does not matter for MT generation
e Elevations are very sensitive to U and storm direction
* Important source of error: Ap is based on gauge records at 6 min interval

* Range of parameters for all EC MT Minimum Storm Length (km) 300
 MC simulations will be performed Ifpstc iGEVLEntIH (o) _ Ll
_ , _ Minimum Pressure Field Velocity (m/s) | 15
* MT hazard Wll.l be included in Max Pressure Field Velocity (m/s) 31
NTHMP mapping Minimum Pressure Jump(mb) 0.9
Max Pressure Jump(mb) 4.1
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Meteotsunami detection and warning

Detection of MT is important as large events can cause loss of life and property
damage (enhanced by resonance in harbors) (Geist et al., 2014)

Detection of MT is difficult as there is no natural warning (e.g., EQ) and they can occur
over a large area => point measurements (gauges) are not sufficient

Detection of squalls/derechos with parameters in the critical range could be made and
hence risk of MT identified before it even happen (e.g., Titov, 2018; PMEL-NOAA).
Detection of the MT itself can be made using HF radars. Surface currents of the
06/13/13 event were identified a posterioriin Codar data (Lipa et al., 2014)

=> Spatially dense measurements that can more easily detect MT events

Guérin et al. (2017, 2018) developed new tsunami detection algorithms for HF radar,

which are implemented in the Tofino, BC Wera radar.

=> a strong “meteotsunami-like” event (1 m elevation) was detected in real time on
10/14/16 that occurred off Tofino in the wake of Typhoon Songda




MT Detection with the Tofino WERA radar

 WERA HF radar installed in 2015 in Tofino (Vancouver Island) for tsunami detection

* Part of « Neptune Observatory » maintained by ONC on the Pacific side of BC

* Radial currents measured up to 85-100 km range, 1.5 km range resolution and ~10 deg
azimuthal resolution

NEPTUNE Canada Observatory
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Tsunami alert triggered at Tofino WERA radar

e Tsunami alert triggered at the Tofino HF radar on October 14th, 2016, at 6.06 am
* Remnants of Typhoon Songda were moving up the coast s Coge okl
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Inverted current time series - ®km  s26am ”
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» Step in current speed with 25 cm/s jump

* Speed of front consistent with shelf long wave celerity - ‘ _ rengezo-axv
=> possible Proudman resonance i 30 km
* Details in Guérin et al. (2017, 2018) gf'wy I | W
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