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East-Coast	Meteotsunami	hazard	
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•  Mostly	caused	by	squall	lines	and	
derechos	moving	onto	the	shelf,	
towards	the	E-SE	sector	

•  Frequent	in	summer	(Bluestein,	1993)	
•  Ex:	Radar	for	June	13,	2013	EC	
meteotsunami	=>	2	m	waves	off	of	NJ	



East-Coast	Meteotsunami	hazard 
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•  MT	generation	mechanisms:		
•  Proudman	(1929)	resonance	(U	~	(gh)1/2)	
•  Edge	waves	(Greenspan,	1956;	like	SMFs)	
•  Shelf	resonance	(Monserrat	et	al.,	2006)	
•  Shelf	edge	reflection	(Rabinovitch,	2003)	
•  Harbor	resonance	(20+	for	06/13/18	MT)	

[Geist	et	al.,	2014:	June	13,	2013	MT	modeling]	



East-Coast	Meteotsunami	hazard	
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•  MT	generation	mechanisms:		
•  Proudman	(1929)	resonance	(U	~	(gh)1/2):	

Δη	~	Δp	U	t/w	

with	Δp	the	pressure	discontinuity	and	w	the	
pressure	front	width	(Hibiya	et	al.,	1982)	

[Geist	et	al.,	2014:	June	13,	2013	MT	modeling]	



East-Coast	Meteotsunami	hazard	
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•  MT	generation	mechanisms:		
•  Proudman	(1929)	resonance	(U	~	(gh)1/2):	 	=>	Depth	h	(meter)	and	celerity	c	(m/s)	

Δη	~	Δp	U	t/w 	 	 	 	 	=>	Typical	U	≈	[7.2	– 29.6]	(m/s)	(95%	CL)	

with	Δp	the	pressure	discontinuity	and	w	the 						Typical	Δp	≈	[0	– 5.2]	(hPa)	(95%	CL)	
pressure	front	width	(Hibiya	et	al.,	1982)	 [Geist	et	al.,	2014]	



->	CVV	Far-field	flank	collapse	of	CVV	(80	to	
450	km3	volume;	return	period	(?)	perhaps	
1,000-100,000	yrs.	
[Abadie	et	al.,	2012;	Tehranirad	et	al.,	2015]	
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SMFs	

Extreme	sources	(PMTs)	(2010-…):	

->	LSB-M9	far-field	seismic	source	:	repeat	of	
Lisbon	1755	[Barkan	et	al.,	2008]	

->	PRT-M9	far-field	seismic	source	in	PRT:	
600	x	150	km		(12	SIFT	sources;	12	m	slip;	
600	yr	of	full	(orthogonal)	convergence)		
[Knight,	2006;	Grilli	et	al.,	2010]	

->	near-field	SMFs	on	continental	slope/margin:	assumed	to	be	rigid	slumps	with	Currituck	slide	
characteristics	(proxies;	165	km3	volume)	[Grilli	et	al.,	2015,	2017;	Schambach	et	al.,	2018]	

East-Coast	tsunami	hazard	assessment	(NTHMP)	



->	3D-NS	simulation	up	o	20	min	(m)	
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Far-field:	Cumbre	Vieja	450	km3	flank	collapse	(NTHMP)	

[Abadie	et	al.,	2012;	Tehranirad	et	al.,	2015]	



->	2D-FUNWAVE-TVD	transoceanic		
					simulations	in	nested	grids	(m)	
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Cumbre	Vieja	450	km3	flank	collapse	source	(NTHMP)	

[Abadie	et	al.,	2012;	Tehranirad	et	al.,	2015]	
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Near-field:	Hudson	River	Canyon	165	km3	SMF	
[Grilli	et	al.,	2015,	2017;	Schambach	et	al.,	2018]	
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•  Inundation	mapping	from	PMT	sources	in	Atlantic	Ocean:	

	 	 	 	 		=>	Volcanic	collapse	(La	Palma	CVV)	
	 	 	 	 		=>	Submarine	Mass	Failures	(SMFs;		

	 	 	 								off	the	continental	shelf)	
	 	 	 	 		=>	Coseismic	(LSB,	PRT)	
							 	 	 	 								[Bare	earth	DEM,	no	erosion]	
	

•  No	return	periods	for	maps	
•  Only	extreme	hazard	is	mapped	
	
•  At	100	y	return,	MT	may	

dominate	EC	tsunami	hazard	
	

East-Coast	tsunami	hazard	assessment	
	(NTHMP;	2010-…)	



East-Coast	Meteotsunami	hazard	for	NTHMP	mapping	
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•  Geist	et	al.	(2014):	
•  Statistics	of	2000-2013	EC	events	caused	by	squall	lines/derechos	
•  Validation	of	modeling	for	06/13/13	MT	(a	few	max.	elevations	at	tide	gages)	
•  Monte	Carlo	simulations	=>	hazard	curves:	ηmax	=	f(Tr)	at	tide	gages	

•  Here,	based	on	Dusek	et	al.’s	(2018)	EC	tide	gage	analysis	from	1996-2018:	
•  Select	10	squall	lines/derechos	events	with	Δp	>	0.9	hPa	at	at	least	4	tide	gages	
•  Use	radar/tide	gages	to	infer	squall	geometry,	direction	and	speed	[Vilibic	et	al.,	2008]	
•  Parameterize	as	moving		Gaussian	pressure	dist.	=>	modeling	with	FUNWAVE-TVD	



East-Coast	Meteotsunami	hazard	for	NTHMP	mapping	
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•  Here,	based	on	Dusek	et	al.’s	(2018)	EC	tide	gage	analysis	from	1996-2018:	
•  Select	10	squall	lines/derechos	events	with	Δp	>	0.9	hPa	at	at	least	4	tide	gages	
•  Use	radar/tide	gages	to	find	squall	geometry,	direction	and	speed	[Vilibic	et	al.,	2008]	
•  Parameterize	as	moving		Gaussian	pressure	dist.	=>	modeling	with	FUNWAVE-TVD	

•  		=>	use	Δp	
					from	gauge	
•  					records	



East-Coast	Meteotsunami	hazard	for	NTHMP	mapping	
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•  Here,	based	on	Dusek	et	al.’s	(2018)	EC	tide	gage	analysis	from	1996-2018:	
•  Select	10	squall	lines/derechos	events	with	Δp	>	0.9	hPa	at	at	least	4	tide	gages	
•  Use	radar/tide	gages	to	find	squall	geometry,	direction	and	speed	[Vilibic	et	al.,	2008]	
•  Parameterize	as	moving		Gaussian	pressure	dist.	=>	modeling	with	FUNWAVE-TVD	

•  		=>	use	Δp	
•  	from	gauge	
•  					records	



East-Coast	Meteotsunami	hazard	for	NTHMP	mapping	
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•  Example	of	06/13/13	MT:	
•  Δp	=	6	hPa	(10	by	463	km),	U	=	26	m/s,	dir.	25	deg.	
•  modeling	with	FUNWAVE-TVD	:	500x500	m	grid,	with	dispersion,	11h	

•  		=>	modeling	
•  						



East-Coast	Meteotsunami	hazard	for	NTHMP	mapping	
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•  Example	of	06/13/13	MT:	
•  Δp	=	6	hPa	(10	by	463	km),	U	=	26	m/s,	dir.	25	deg.	
•  modeling	with	FUNWAVE-TVD	:	500x500	m	grid,	with	dispersion,	11h	

•  		=>	modeling	



East-Coast	Meteotsunami	hazard	for	NTHMP	mapping	
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•  Example	of	06/13/13	MT:	
•  Δp	=	6	hPa	(10	by	463	km),	U	=	26	m/s,	dir.	25	deg.	
•  modeling	with	FUNWAVE-TVD	:	500x500	m	grid,	with	dispersion,	11h	

•  		=>	modeling	



East-Coast	Meteotsunami	hazard	for	NTHMP	mapping	
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•  Example	of	06/13/13	MT:	
•  Δp	=	6	hPa	(10	by	463	km),	sensitivity:	U	=	23-29	m/s,	dir.	25	deg.	
•  Modeling	with	FUNWAVE-TVD	:	500x500	m	grid,	with	dispersion,	11h	

•  		=>	Atlantic	
•  							City	
•  							Gauge	



East-Coast	Meteotsunami	hazard	for	NTHMP	mapping	
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•  Example	of	06/13/13	MT:	
•  Δp	=	6	hPa	(10	by	463	km),	sensitivity:	U	=	26	m/s,	dir.	335,	0,	25	deg.	
•  Modeling	with	FUNWAVE-TVD	:	500x500	m	grid,	with	dispersion,	11h	

•  		=>	Atlantic	
•  							City	
•  							Gauge	



East-Coast	Meteotsunami	hazard	for	NTHMP	mapping	
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•  Example	of	06/13/13	MT:	
•  Δp	=	6	hPa	(10	by	463	km),	sensitivity:	U	=	26	m/s,	dir.	25	deg.	
•  Modeling	with	FUNWAVE-TVD	:	500x500	m	grid,	with/without	dispersion,	11h	

•  		=>	Atlantic	
•  							City	
•  							Gauge	



East-Coast	Meteotsunami	hazard	conclusions	
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•  Similar	simulations	were	performed	for	10	selected	MT	(Woodruff,	2018;	MS)	
•  Overall	good	agreement	at	tide	gages	similar	to	06/13/13	event	
•  Main	features	are	well	captured	(height	and	period)	with	small	underprediction		
						of	elevations	likely	due	to	the	coarse	nearshore	grid	

•  Frequency	dispersion	does	not	matter	for	MT	generation	
•  Elevations	are	very	sensitive	to	U	and	storm	direction	
•  Important	source	of	error:	Δp	is	based	on	gauge	records	at	6	min	interval	

•  Range	of	parameters	for	all	EC	MT	
•  MC	simulations	will	be	performed	
•  MT	hazard	will	be	included	in		
					NTHMP	mapping	
	

•  s	



Meteotsunami	detection	and	warning	
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•  Detection	of	MT	is	important	as	large	events	can	cause	loss	of	life	and	property	
damage	(enhanced	by	resonance	in	harbors)	(Geist	et	al.,	2014)	

•  Detection	of	MT	is	difficult	as	there	is	no	natural	warning	(e.g.,	EQ)	and	they	can	occur	
over	a	large	area	=>	point	measurements	(gauges)	are	not	sufficient	

	
•  Detection	of	squalls/derechos	with	parameters	in	the	critical	range	could	be	made	and	

hence	risk	of	MT	identified	before	it	even	happen	(e.g.,	Titov,	2018;	PMEL-NOAA).	
•  Detection	of	the	MT	itself	can	be	made	using	HF	radars.	Surface	currents	of	the	

06/13/13	event	were	identified	a	posteriori	in	Codar	data	(Lipa	et	al.,	2014)	
					=>	Spatially	dense	measurements	that	can	more	easily	detect	MT	events	
	
•  Guérin	et	al.	(2017,	2018)	developed	new	tsunami	detection	algorithms	for	HF	radar,	

which	are	implemented	in	the	Tofino,	BC	Wera	radar.	
					=>	a	strong	“meteotsunami-like”	event	(1	m	elevation)	was	detected	in	real	time	on		
										10/14/16	that	occurred	off	Tofino	in	the	wake	of	Typhoon	Songda	

		



•  WERA	HF	radar	installed	in	2015	in	Tofino	(Vancouver	Island)	for	tsunami	detection	
•  	Part	of	«	Neptune	Observatory	»	maintained	by	ONC	on	the	Pacific	side	of	BC	
•  Radial	currents	measured	up	to	85-100	km	range,	1.5	km	range	resolution	and	~10	deg	

azimuthal	resolution	
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MT	Detection	with	the	Tofino	WERA	radar	
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•  Low	pressure	front	propagates	at	about	U	=	26.4	m/s	
•  Tide	gage	oscillations	of	10	cm,	with	20	min	period		
•  No	seismic	activity			=>	possible	meteo-tsunami	?	

		

•  Tsunami	alert	triggered	at	the	Tofino	HF	radar	on	October	14th,	2016,	at	6.06	am	
•  Remnants	of	Typhoon	Songda	were	moving	up	the	coast	
	

Tsunami	alert	triggered	at	Tofino	WERA	radar	
	



	
	
	

	 			
•  Currents	inverted	from	HF	radar	along	azimuth	#70		
			at	ranges	of		30,	45	and	60	km	
•  Step	in	current	speed	with	25	cm/s	jump	
•  Speed	of	front	consistent	with	shelf	long	wave	celerity	
				=>		possible	Proudman	resonance		
•  Details	in	Guérin	et	al.	(2017,	2018)		
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