Constraining tsunami source—Inverse modeling of velocities and inferred cause of overwash that emplaced inland fields of boulders at Anegada, British Virgin Islands

Mark Buckley\(^1\), Yong Wei\(^2\), Bruce Jaffe\(^1\), and Steve Watt\(^1\)

\(^1\) U.S. Geological Survey, Santa Cruz, CA
\(^2\) NOAA/PMEL, Seattle, WA

AGU
December 16, 2010
San Francisco, CA

This information is preliminary, is subject to revision, and it is not for citation or further distribution. This material solely provides a record of the slides shown during the USGS-NTHMP Workshop held on February 1-2, 2016 and is not a final scientific record complete with references to prior work. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.
Site description

This information is preliminary, is subject to revision, and it is not for citation or further distribution. This material solely provides a record of the slides shown during the USGS-NTHMP Workshop held on February 1-2, 2016 and is not a final scientific record complete with references to prior work. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.
Possible overwash sources

North America Plate

~ 3,300 km to M 9.0 Lisbon eq.

M 8.0 outer-rise eq.

M 8.7 thrust eq.

Puerto Rico

Anegada

Caribbean Plate

0 125 250 km
Numerical modeling results

This information is preliminary, is subject to revision, and it is not for citation or further distribution. This material solely provides a record of the slides shown during the USGS-NTHMP Workshop held on February 1-2, 2016 and is not a final scientific record complete with references to prior work. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.
Field measurements of boulders

Boulder wt (kilograms)

- 1.43 - 10.00
- 10.01 - 25.00
- 25.01 - 50.00
- 50.01 - 100.00
- 100.01 - 250.00
- 250.01 - 500.00
- 500.01 - 774.68

This information is preliminary, is subject to revision, and it is not for citation or further distribution. This material solely provides a record of the slides shown during the USGS-NTHMP Workshop held on February 1-2, 2016 and is not a final scientific record complete with references to prior work. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.
Forces
- Drag force, F_D
- Inertia force, F_I
- Lift force, F_L
- Gravitational force, F_g

Forces formulations
- $F_D = 0.5 \rho_f C_D A_N u^2$
- $F_I = \rho_f C_M V \dot{u}$
- $F_L = 0.5 \rho_f C_L A_L u^2$
- $F_g = (\rho_s - \rho_f) V g$

For sliding:
- $F_D + F_I > \mu_s (F_g - F_L)$
Calculated flow speed

This information is preliminary, is subject to revision, and it is not for citation or further distribution.
This material solely provides a record of the slides shown during the USGS-NTHMP Workshop held on February 1-2, 2016 and is not a final scientific record complete with references to prior work.
The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.
Boulder constraints on tsunami source

Calculated flow speed for transport of largest boulders

Speed from numeric hydrodynamic models