MODELING TSUNAMI INUNDATION AND ASSESSING TSUNAMI HAZARDS FOR THE U.S. EAST COAST (NTHMP)

NOAA NTHMP Workshop
July 25, 2012

Presented by:

Stephan T. Grilli
Department of Ocean Engineering
University of Rhode Island
Project teams:

University of Delaware:

James T. Kirby (co-PI, inundation and propagation modeling, project coordination)
Fengyan Shi (Res. Asst. Prof, inundation and propagation modeling) (part ONR)
John Callahan (Scientist, Del. Geological Soc., GIS/DEM database development, inundation map development)
Babak Tehranirad (Graduate Research Assistant) (part ONR, NSF)

University of Rhode Island:

Stephan Grilli (co-PI, source definition and far- to near-field modeling, coordination of URI tasks),
Chris Baxter (Assoc. Prof., MC simulations of SMF sources, geotech./geology).
Jeff Harris (postdoc, integration of source simulations and propagation modeling),
Taybeh Tajalli-Bakhsh (Graduate Research Assistant (part NSF); propagation modeling),
Tamara Eggeling (Graduate Research Assistant (IEP funded); SMF stability analyses),
Literature review established broad selection of potential sources for US East Coast
An Overview of Distant Sources I: Flank collapse of Cumbre Vieja Volcano using 3D multi-fluid VOF model

- **2D slope stability** computations (with 2 different models) on various cross sections. Geotechnical parameters are progressively reduced (mimicking hydrothermal alteration) until unstable state.

- **3D slide volumes** are inferred using a 3D ellipsoid shape, based on the 2D failure contours and geological considerations for lateral extent.

 => *Slide volumes range from 20 to 80 km3, depending on the scenario, with an additional extreme 450 km3 scenario. (similar to Ward and Day, 2000)*

[Vizualisation of the quasi elliptic failure contour (Drucker-Prager failure criterion) calculated with the finite element code ADELI]
Set-up of 3D tsunami generation model (THETIS)

Geometry of 3D THETIS domain
Nested within larger scale domain for propagation model

(Abadie et al., JGR, 2012)
CVV 450 km³ 3D tsunami generation (THETIS)
Computational domains for FUNWAVE propagation modeling

Multi-model, nested grid simulations => Thetis (3D) 500 m grid, to FUNWAVE (Cart. 2D) 1000 m grid, to FUNWAVE 2’, 30” (Spherical 2D), 7.5” and 30 m (Cart. 2D) grids.
CVV FUNWAVE-TVD propagation modeling
(spherical to Cartesian inundation grids)
CVV impact on East Coast: New England (30” grid)
CVV impact on East Coast: South-East (30” grid)
CVV impact on East Coast: Mid-Atlantic (30” grid)
CVV impact off of NJ: with barrier (30 m grid)
CVV impact off of NJ: no barrier (30 m grid)
Overview of Distant Sources II: PRT/Caribbean subduction zone tsunamiogenic earthquakes

Summary

- Historical examples include 1867 (7.7 near US Virgin Islands); 1918 (7.3 from PR); 2010 (7.0 from PR)
- Tsunami risk studied by many (e.g., Zahibo and Pelinovsky 2001)
- NOAA Forecast Source Database (Gica et al. 2008) modeled series of potential sources (SIFT)
- Potential high risk to particular communities (e.g., S. Carolina)
- Use Okada (1985) to initialize FUNWAVE (spherical) on the free surface as a hot start

NOAA Forecast Source Database Example (at49b)
Overview of Distant Sources II: PRT/Caribbean subduction zone tsunamigenic earthquakes
Overview of Distant Sources II: PRT/Caribbean subduction zone tsunamigenic earthquakes
Max. Elevation for a PRT M9 source (30” grid)
Overview of distant sources III: Azores-Gibraltar convergence zone

Summary

• Region best known for 1755 Lisbon earthquake (8.5-9.0 magnitude; 100,000 deaths)
• Earthquake extensively studied (e.g., Johnston 1996; Baptista et al. 1998; Gutscher et al. 2006; Grandin et al. 2007)
• Source of 1755 quake not known; Barkan et al. 2009 simulated possibilities based on far-field effect
• Not included in NOAA Forecast Source Database

16 sources considered for East Coast Inundation Studies
Max. Elevation for M9 Lisbon 1755 sources (1’ grid)
SMF source selection: Probabilistic analysis of coastal hazards associated with submarine mass failures

Summary

- **Two major historical SMF tsunamis** caused by Grand Banks (1929) and Currituck (24-50,000 years ago)
- **33% of US East Coast continental slope covered by landslide scars** and deposits (Twichell et al. 2009)
- Large number of SMFs were analyzed using **Monte Carlo analysis (MCS)** in addition to historical cases

1929 Grand Banks source
Results of MCS analysis of SMF tsunami hazard

- **Simplified coastline** with names of corresponding coastal states, ranges of indices of studied coastal points, numbered N-S ([Baxter et al., 2011; Krauss, 2011; Grilli et al. 2009.])
Collaborative work with USGS (J. Chaytor, U. Ten Brink) for site specific validation of MCS
Locations of the transects for site specific analysis of seismically triggered SMFs
Locations of boreholes and available data
Bathymetry/seismic lines along transects
Site response analysis along transects (P-, S-wave, PGA analyses from log/core data)

=> Stability analysis/tsunami genesis to follow
Modeling of SMF Tsunami generation and propagation (NHWAVE-FUNWAVE.TVD)

Old approach for SMF tsunamis

- Generated by TOPICS (see e.g., Watts et al., 2003)
- Propagation as a restart of FUNWAVE (2D)
- Successfully used previously for submarine landslides (e.g., Watts et al., 2003) and co-seismic sources (e.g., Grilli et al., 2005-2010)

New approach for SMF tsunamis

- Generation by NHWAVE (Ma et al., 2012) => 3D sigma-level non-hydrostatic model
- Propagation by FUNWAVE-TVD : (Shi et al., 2012) => 2D Boussinesq model
- Successfully used to simulate laboratory experiments and a few case studies
NHWAVE simulation of Enet and Grilli’s (2007) slide
Enet and Grilli: Model – data comparison

Fig. 13. Comparisons between nonhydrostatic numerical results (solid lines), hydrostatic numerical results (dash-dot lines) and experimental data (dashed lines) for free surface elevation for landslide-generated waves at three wave gauges with initial depth of submergence \(d = 61 \text{ mm} \). Gauge coordinates \((x, y)\): (a) \((1469,350) \text{ mm}\); (b) \((1929,0) \text{ mm}\); (c) \((1929,500) \text{ mm}\), where \(x \) is distance from shoreline and \(y \) is perpendicular distance from the axis of the shore-normal slide trajectory.

Fig. 14. Snapshots of landslide-generated waves simulated using nonhydrostatic model at times (a) \(t = 1.0 \text{ s}\); (b) \(t = 2.0 \text{ s}\) and (c) \(t = 3.0 \text{ s}\) after release of the sliding mass. The surface elevation is exaggerated 5 times.

Solid: observed; dash: fully-dispersive; dash-dot: non-dispersive
Simulations of SMF tsunami generation, propagation and coastal impact

Tsunami elevation computed with NHWAVE (up to 15 mins.) and FUNWAVE-TVD, in a 500 m regional grid, for the first SMF source. (a) instantaneous elevation after 75 mins of propagation; (b) maximum envelope of elevation
SMF/landslide issues

1. Appropriateness of SMF-MCS events from a geological standpoint:
 • MCS estimated sources are being validated by USGS working with the UD/URI team (completion by end of August 2012)

2. Appropriateness of using SMF-MCS probabilistic results, or should worst-case historical scenarios form the basis of NTHMP mapping, or both?.
 • UD/URI have sought input from the NTHMP program on this question.
 • Guidance on this question could be gained from this workshop.

3. Tsunami wave trains generated by SMF events show large (perhaps excessive) dissipation over wide continental shelves:
 • Coastal tsunami hazard depends on wave shoaling/dissipation balance

4. Effects of extensive barrier islands/beaches on arriving tsunamis:
 • Should barriers be removed to simulate worst breaching/erosion?

5. One should be actively looking for paleotsunami evidence on the East Coast (return periods, size….)
Issue: Large dissipation of (SMF) tsunami wave trains over wide shelves

- Tsunamis often arrive onshore as much more complex wavetrains than had been typically assumed (e.g., long solitary or N-waves)

=> Long waves with superimposed undular bores made of shorter and steeper waves (intense breaking of those in shallow water)

[From Madsen et al. (2008) : 12/26/04 observations and 1D BM modeling]
Large dissipation of SMF tsunami wave trains over wide shelves (rationale)

[Tohoku, Japan, 3/11/11]
• **Modeling coastal tsunami hazard** => shoaling and breaking of such wave trains over complex bathymetry/topography, including *interplay* and effects on runup and inundation of *nonlinear, dispersive, and breaking dissipation processes*. [Even more so for SMF tsunamis]
• **Fully nonlinear/dispersive BM models** feature this kind of physics => FUNWAVE-TVD (Shi et al., 2012) switches from BM to NSW at breaking, controlled by breaking criterion \(H < 0.8 \) times local depth.
Modeling approach affects SMF tsunami hazard

- NTHMP coastal tsunami hazard assessment => **Intense dissipation of incoming tsunami wave trains**, particularly for SMF tsunamis (e.g., *Currituck source*: 3D-NHWAVE -> FUNWAVE)

 -> Must be further studied/elucidated!!