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Talk

- SPH and Neutrino SPH

- Benchmark Problems and Setups
* Discussion of our approach
 Conclusions



SPH

 SPH - designed for solving astrophysical AG) = [ AGo)W (xs — x5, ) s,
problems (Gingold & Monaghan) - 1977 |

» Integral representation of field variables with
smoothing kernels. VAi=)_

e Fluid equations become
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* Volume conservation satisfied using pressure
forces.

* Pressures dependent on speed of sound.
* Needs neighborhood search

e Density computed by




Neutrino - SPH

Compact Hashing technique for nearest neighbor
search.

Uses Implicit Incompressible SPH (IISPH) -
Details ( http://www.naadir.tk/phd-thesis )

 SPH approximation of the continuity equation
to obtain discretized form of the poisson
equation for pressure.

* Relaxed Jacobi solver. (Parallel)

Viscosity - Monaghan’s Method.
Rigid Fluid coupling boundary particles


http://www.naadir.tk/phd-thesis

SPH

» Atrtificial Viscosity

e Based on Von Neumann-Richmyer artificial
viscosity (1950) S ypy—

» Solid Boundary Treatment

* Pressure forces applied from boundary
particles to fluid particles

 Boundary viscosity Fo ., = —my, ¥y (po,)ILi;YWi;.

* Adaptive Time step - Semi Implicit / Euler-Cromer
Integration



Density/Pressure Computation

e Density.

e Based on Monaghan 05 - SPH - Reports on Progress of
Physics.

e (Conserves Mass

 Underestimated densities at fluid interfaces are handled
by special handling Rigid/Fluid/Air boundaries causing
clumping of particles.

 Pressure Forces
« State Equation based SPH (SESPH)

e Particle Pressures are computed by Implicit
Incompressible SPH method.

o Jacobi method used for solution of this implicit method.



Geo scale




Benchmark Problem 5

e Setup
e Terrain geometry bathymetry data
o Setup of Initial Conditions (Volume fill)
o Simulation
e Time to settle
 Paddle Movement
e Measurement Fields
Data and Video comparisons
e Discussion



Benchmark Problem 5 - Setup
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Benchmark Problem 5 - Setup

e \olumetric representation of geometry of water
e Boolean Operations to remove particles
e Particle overlap removal, settling (87 % volume)




Benchmark Problem 5 - Setup

e \olumetric representation of geometry of water
e Boolean Operations to remove particles
e Particle overlap removal, settling (87 % volume)




Wave Piston

e Goring 1978 Wave Model for a Piston wave maker.

Goring (1978) proposed a model for the purpose of laboratory solitary wave generation. The surface
profile n(x,r)of a solitary wave can be described using the following equation:

n(x,0) = Hsech*(x(Ct—X,) ] (B-1)

ve(H + h)

x = \V3IH/4k (B-3)

Where C is the wave celenty or phase velocity, X is the wave displacement, /7 is the wave height and A
i1s the depth of the ocean. Applying equation B-1 to the wave maker piston results in

Xo(f) = Hixh (tanh(x(Ct— X)) (B-4)

Using this equation one can solve for the wave piston displacement and wave piston duration using newton
iterations resulting in

S=~NI6HMW3
and
tr=2(3.80 + H/hyxC

where S is the displacement and 7, 1s the time taken for it,




Benchmark Problem 5 - Setup




Benchmark Problem 5 - Setup




Benchmark Problem 5 - Data

e Roughness
parameter
0.002




Benchmark Problem 5 - Data

e Roughness
parameter
0.003




Benchmark Problem 5 - Data

e Roughness
parameter
0.009




Benchmark Problem 5 - Data

e Roughness
parameter
0.002




Benchmark 5 - Video




Benchmark 5 - Video




Benchmark Problem 5 - Discussion

e No Turbulence Modeling
e Roughness based on Artificial Viscosity

e Research on Manning Coefficient/Artificial
Viscosity/Reynolds Number



Benchmark Problem 4

e Setup - Similar to Problem 5
e Simulation

o Scripted Wave piston movement based on data
e Data and Video comparisons



Benchmark Problem 4

e Setup - Terrain

Ay .
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Benchmark Problem 4

e Wave piston movement




Benchmark Problem 4

 Simulation




Benchmark Problem 4

 Simulation




Benchmark Problem 4

e Simulation




Benchmark Problem 4 - Data




Benchmark Problem 4 - Data

Flow Depth (m)
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Measured B9
Neutrind 89




Benchmark Problem 4 - Data
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Benchmark Problem 4 - Video




Benchmark Problem 4 - Discussion

e \elocity Profiles

e Base water height was 0.94m vs 0.97 (problem)
 Roughness coefficient was based on Problem 5

e Momentum flux not yet implemented on
measurement



Benchmark Problem 1

e Setup
e Periodic Boundary Conditions
e Inflow Velocity set to U

e Particle Interaction Radius based Passive
Domain on either side of the flow boundary

e Particles exiting the active domain are placed as
copies in either side in the passive domain.

e Limitation
 Roughness Modeling and model Resolution




Benchmark Problem 1

—
Flow direction
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Benchmark Problem 1
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Benchmark Problem 1 - Alt Video




Benchmark Problem 1 - Discussion

e Vorticity not clearly prevalent with this problem
domain

e Data didn’t match - work needed



Benchmark Problem 2

 Data
e 7000x7000x2 m
100 Million Particles with 0.5m Res
e 800 Million Particles with 0.25m Res

e Memory/Computing
o 128 G Memory with 40 Threads - 1 Min Sim - 96 Hours



Conclusion and Future Work

e Better modeling of solid/fluid friction

e Coupling 2D shallow water simulations with 3D SPH
Distributed computing to handle large particle count
Validation in geophysical scale.



Monster Wave
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