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- Boussinesq Ocean & Surf Zone model - 



- Developed for energetic breaking waves 

- Applications in: Flood hazard mapping, 
                           Disaster management, 
                           Studying nearshore processes 
                           Coastal engineering design. 

- Requirements: Cover wide range of wave scenarios, 
                           Numerical robustness, 
                           Efficient computation. 

As complex as necessary, as lean as possible! 
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B O S Z 
in a nutshell 
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 ● Depth-integrated Boussinesq-type Equations 
     • Conservative form of Nwogu’s (1993) Boussinesq equations, 
        see: Roeber & Cheung (2012) 
     • Shallow water equations as subset 
     • Extension with nonlinear dispersion 
 
● Momentum Conservation  
     • Imbedded conservation laws for sub- and supercritical flows    

  
● Finite Volume - Finite Difference scheme 
     • Explicit 2nd or 4th order Runge-Kutta time integration, 
        adaptive time step, 
     • Riemann solver for wave breaking 
 

● Parallelization 
     • Full OpenMP parallelization to handle large flow problems  

BOSZ 
Key Features 
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Momentum x: 

BOSZ 
Governing Equations 

Hu( )t + Hu2( )x + Huv( )y = u Ht + Hu( )x + Hv( )y( )+H ut +uux + vuy( )

Hv( )t + Hv2( )y + Huv( )x = v Ht + Hv( )y + Hu( )x( )+H vt + vvy +uvx( )

Conserved 
variables: 

dispersion 

dispersion flux local 

local flux + bottom slope 



BOSZ 
Equation Restructuring 

Vector form: Ut +F U( )x +G U( )y +S U( ) = 0 U = [H, P, Q]T  
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Dispersion terms only 
containing spatial derivatives 
In Finite Difference 

Nonlinear Shallow-Water Equations 
With 2D TVD reconstruction and 
HLLC Riemann solver 
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- 2D 5th order TVD reconstruction (Kim & Kim 2005) 
 
- Wet/dry boundary based on Audusse et al., 2004, and Liang, 2010  
 
- Frictional drag based on Manning’s n 
 
- Indexing of only wet cells to save computation time 



Equation Solution 
Runge-Kutta time integration of 2nd or 4th order with adaptive time step 
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Flow velocities U and V from series of 
one-dimensional systems of equations 

Favorable to parallelization in the x and the y 
direction without data dependency 
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Temporal derivatives in cross-terms 
are evaluated with one-sided derivatives 
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u x, z, t( ) = zα ∇h ∇⋅uα( )+∇ ∇h ⋅uα( )#$ %&+
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w x, z, t( ) = − uα ⋅∇h+ z+ h( )∇⋅uα$% &' −h < z <η

Horizontal velocity at any depth:  

Vertical velocity at any depth:  

For range 

zα = −0.5208h

Evaluation of velocity variables at approximately mid depth 

Velocity Variables 

zα = −0.333h

zα = −0.53h



Wave Breaking in BOSZ 

Potentially 
arising 

instability 

Two strategies:  1. Problem Buffering 

2. Problem Prevention 

Eddy viscosity 

Neglecting dispersion 
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Momentum conserved for sub- and supercritical flow without additional treatment 



Wave Breaking in BOSZ 

Momentum 
Gradient 

 ∂(HU)
∂x

Celerity 
gH

Momentum 
Gradient 

 ∂(HU)
∂x

∂(HU)
∂x

> 0.5 gH

Ignore dispersion locally and momentarily if: 

∂(HU)
∂x

> 0.5 gH ∂(HV )
∂y

> 0.5 gH, 

9 



10 

Previous BOSZ Validation 

US National Tsunami Hazard Mitigation Program 

Model verification/validation with analytical solutions 
and laboratory experiments 



2. Solitary wave reflection 

BOSZ 
experimental data  
(Briggs et al., 1995) 

BOSZ performance: 
•   Reasonable results even for  
   conditions beyond model’s 
   range of applicability 
 

Test C: A/h = 0.696 

Runup experiment: 27.43 cm  
Runup BOSZ:         22.10 cm 81 % 

Previous Model Validation 



Previous Model Validation 

BOSZ, no breaking 
BOSZ, with breaking 

Basin 
configuration 

experimental data 
(Briggs et al., 1995) 

Wave 
input 

0.32 m 

3. Solitary wave around conical island 



Free surface 
BOSZ, no breaking 
BOSZ, with breaking 

Basin 
configuration 

experimental data 
(Briggs et al., 1995) 

Wave 
input 

0.32 m 

3. Solitary wave around conical island 
Inundation 

Previous Model Validation 



4. N-wave at Okushiri Island, Monai 

BOSZ 
experimental data  

(Matsuyama & Tanaka 2001) 
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Wavemaker 
y [m] 

x [m] 

Previous Model Validation 



4. N-wave at Okushiri Island, Monai 

BOSZ 
experimental data  

(Matsuyama & Tanaka 2001) 

x [m] 

y [m] 

Inundation Line 

0 

0 

0 

0 

0.1 

0.1 

0.1 

Previous Model Validation 
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Large Wave Flume, 
Oregon State University 

Additional Benchmark Tests 



BOSZ - validation, real reef 

Southshore Oahu, HI 

Waikiki 

Aquadopp ADCP 



BOSZ – flow velocity, Waikiki 

Mean flow velocity Wave Setup 
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Nearshore Waves on top of storm surge 
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BM1, flow over cone 

Flume: 
Water depth:   5.4 cm 
Flow speed : 11.5 cm/s 
Courant       : 0.158 

Δx : 1-3 cm 
 n  : 0.01-0.025 s/m1/3 

BOSZ settings: 

Boundary conditions: 
 

•  Discharge at left boundary by adding mass 
•  Iterative adjustment of flow speed (control point  ) 
•  Subtraction of extra flow depth from bathymetry 
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Comparison at Gauge 1 

n= 0.01 s/m1/3 
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Comparison at Gauge 2 

n= 0.01 s/m1/3 
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Comparison at Gauge 1 

n= 0.01 s/m1/3 

n= 0.02 s/m1/3 



26 

Comparison at Gauge 2 

n= 0.01 s/m1/3 

n= 0.02 s/m1/3 
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Grid size dependency 

dx = 0.010 m dx = 0.015 m dx = 0.020 m dx = 0.030 m 
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Grid size dependency 

dx = 0.010 m dx = 0.015 m dx = 0.020 m dx = 0.030 m 
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dispersive vs. hydrostatic 

dispersive hydrostatic 
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dispersive vs. hydrostatic 

dispersive hydrostatic 
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BM2, Tohoku tsunami in Hilo Bay 

Δx,Δy : 18.7 m / 20.6 m 
              9.3 m / 10.3 m 
              4.7 m / 5.1 m 
 
       n : 0.025 s/m1/3 

BOSZ settings: 

Boundary conditions: 
 

•  Change in continuity equation according to tsunami time series 
•  Input only along North boundary 
•  Radiation boundary conditions at North and East side 
 

Δx  

Δy  
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Initial test with input wave signal over flat bathymetry 

Data 

BOSZ -  uniform bathymetry of 30 m 
-  no friction 
-  open radiation boundary conditions 
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Dispersive vs. hydrostatic 

Dispersive hydrostatic 
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Free surface comparison 

Δx = 20 m Δx = 10 m Δx = 5 m 
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HA1125 - velocity 

Δx = 20 m Δx = 10 m Δx = 5 m 
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HA1126 - velocity 

Δx = 20 m Δx = 10 m Δx = 5 m 
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dx = 20 m 
dx = 10 m 

dx = 5 m 

Maximum Velocities 
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BM5, reef with cone 

Tsunami Wave Basin 
Wave height: 0.39 m 
Water depth: 0.78 m 
A/h:       0.5 
3D reef with apex 

Top 
view 

Wavemaker 

Wave gauges 
 ADV (velocity) x 

Tsunami Wave Basin, 
Oregon State University 

Laboratory Facility 
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BM5 – free surface 

BOSZ 
OSU data 
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BOSZ 
OSU data 

BM5 – velocity 
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Conclusions for BM tests 

•  Results are not very grid dependent. 

•  BOSZ resolves current flow structures reasonably well. 

•  Friction is a critical factor in shallow flows. 

•  Even for fairly hydrostatic problems, use dispersive model. 

Volker Roeber 
roeber@irides.tohoku.ac.jp 


