Review and Update

U.S. States and Territories National Tsunami Hazard Assessment: Historical Record and Sources for Waves

Paula K. Dunbar National Oceanic and Atmospheric Administration

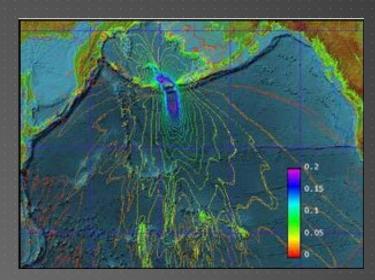
> Craig S. Weaver U.S. Geological Survey

Prepared for the National Tsunami Hazard Mitigation Program

August 2008

U.S. DEPARTMENT OF INTERIOR
U.S. Geological Survey

NATIONAL TSUNAMI HAZARD ASSESSMENT (NTHA) - BACKGROUND


- Tsunami Risk Reduction for the United States: A Framework for Action, 2005, National Science and Technology Council
 - Develop tsunami hazard and risk assessments for all coastal regions of the US states and territories
- NOAA's National Geophysical Data Center (Paula Dunbar, NGDC) and U.S.
 Geological Survey (Craig Weaver, USGS) collaborated on first NTHA, 2008
- NAS report (2011) recommends development of National Tsunami Risk Assessment
- ▶ NTHMP Strategic Plan includes milestone for updating NTHA
- Update of NTHA needed for reevaluation of NTHMP membership and funding priorities

SUPPORT FOR NATIONAL TSUNAMI HAZARD ASSESSMENT (NTHA) UPDATE

- Major advances in tsunami hazard/ vulnerability/risk assessment information
 - NTHMP held two advanced workshops and two AGU sessions in 2012 and 2013
 - Source characterization improvements
 - New vulnerability assessments
 - ► New probabilistic assessments and work groups
 - Risk analysis tool development: HAZUS
- Update of NTHA needed for reevaluation of NTHMP membership and funding priorities
- NTHMP requested an update of the NTHA, 2012
 - Brief review of the 2008 assessment and progress to date
 - ► Good news Craig Weaver (USGS) has agreed to work on update

TSUNAMI HAZARD ASSESSMENT

- Probabilistic tsunami hazard analysis
 - Historical and Prehistorical (paleo) tsunami data
 - Quantitative probabilistic models of local and far-field tsunami sources (earthquake, landslide, volcano)
 - High-resolution DEMs
 (topography, bathymetry, tidal information)
 - Numerous inundation and propagation simulations for tsunami sources

- Goal of the first phase of the National Tsunami Hazard Assessment
 - Oualitative assessment of the hazard at the state level
- Second phase will update the qualitative assessment with new database searches and provide an overview of latest research in each region

NATIONAL TSUNAMI HAZARD ASSESSMENT (NTHA)

- **▶** Introduction
- Known Historical Tsunami Record
- USGS Earthquake Hazards
- ► Gaps in Knowledge of Tsunami Sources
- ► Next Steps
- **▶** Conclusion
- Appendices

UPDATED NTHA

- Generally, the updated document will follow closely the current document with several exceptions:
- ► The summary of observed runups will be updated to the present for all coasts.
- American Samoa will be broken into its own geographical area, separated from the Northern Marianas and Guam. In several places in the text, the need for expanded paleotsunami studies will be emphasized.
- Recent work by the USGS on tsunami sources in both the Gulf of Mexico and the Atlantic will be heavily summarized and referenced. Essentially these studies confirm both the current assessments of these coasts and the need, particularly along the Atlantic, for paleotsunami studies.

UPDATED NTHA - CONTD

- ► The recently completed Canadian tsunami hazard assessment will be discussed with the view of a more or less seamless transition across the various US-Canadian boundaries (e.g., Washington-BC, Alaska-BC, etc.)
- ▶ A discussion of needed additional work will include some discussion of the need to verify scenarios, such as that recently completed in Alaska that predicts strong effects in California.
- ► The USGS expects to provide updated seismic hazard maps for the document, although there remain some hitches in working out the timing of the maps which are currently in review.
- **Scientific controversies**, such as the number of tsunamis in Cascadia, will be noted in the further work section.
- ► Appendix Community Vulnerability (Nate Wood)

EXAMINE THE HISTORICAL TSUNAMI RECORD

- Count tsunami events affecting each state
 - ▶ Bin tsunami events based maximum measured runup
 - ▶ $0.01 \text{ m} \leq \text{runup} \leq 0.5 \text{ m}$
 - 0.5 m < runup ≤ 1.0 m</p>
 - ▶ $1.0 \text{ m} < \text{runup} \le 3.0 \text{ m}$, and
 - ▶ 3.0 m < runup
- ► Tsunami event could be counted in several states (e.g. 1952, 1960, 1964)
- Provide dates of first tsunami observation and first tide gauge installation
- Although not a vulnerability or risk assessment
 - Examine the severity of tsunamis by counting total number of deaths and dollar damage due to tsunamis in each state
 - Count tsunami events binned by local vs distant source

TSUNAMIS AFFECTING U.S. SINCE 2006

- ▶ U.S. East Coast: Meteotsunamis in 2008 and 2013 not included
- ► Caribbean: 2010 Haiti small tsunamis observed on tide gauges PR,VI
- ▶ Pacific: 24 events 22 earthquakes, 2 eruptions (Alaska, N Mariana Is)
 - Teletsunamis:: 2007 Kuril Islands, Solomon Is, Peru; 2009 Indonesia, Kamchatka, Tonga, New Zealand, Vanuatu, Samoa; 2010 Chile, Japan; 2011 Japan, Alaska, Kermadec Is; 2012 Philippines, Canada, Guatemala; 2013 Solomon Is
 - Local Tsunamis: Alaska (2007, 2011, 2013), N Mariana Is (2010)
 - ▶ 1,001 runups: 379 tide gauge, 496 field survey, 93 eyewitness, 33 DART
- ▶ Pacific: 2009 Samoa, 2010 Chile, 2011 Tohoku Japan, 2012 Haida Gwaii, Canada
 - > > 3 m runups: American Samoa (2009 Samoa), Hawaii (2011 Tohoku Japan)
 - ► 1.01-3 m runups: Pismo Beach, CA (2010 Chile); AK, OR, CA, N. Mariana Is (2011 Tohoku)
 - ▶ 0.51-Im runups: HI,AK (2010 Chile); American Samoa, Washington (2011 Tohoku); HI (2012 Haida Gwaii Canada)
 - ▶ 2009 Samoa: 34 deaths, \$125 million damage in American Samoa
 - ▶ 2011 Tohoku: I death, \$55 million in CA, \$31 million HI

RESULTS – TSUNAMI EVENT RUNUPS BY

STATE & REGION

- State tsunami events range from none in PA, DE, VA, NC, GA, AL, MS, and LA to
 132 in Hawaii
- State tsunami events include both local sources of all types as well as runups resulting from a distant source
- Tsunami events:
 - ▶ 8% are in the Atlantic Basin
 - ▶ 92% are in the Pacific
- ► Meteotsunamis will be added

Table 2-1. Tsunami events, total number of runups, deaths, and dollar damage by State and region from the NOAA/NGDC tsunami database. Dollars adjusted for inflation to \$2013. Data are through 31 January 2014.

Changes since 2006 are indicated in red.

									On at little and
Location (year of first confirmed report and	Total	Un-deter	0.01	0.51	1.01		Total	Reported	\$Million damage
tide gauge installation)	Events	mined				> 3.0	runups	Deaths	reported
Maine (1929, 1847)	1	1					3		·
New Hampshire (1929, 1926)	1	1					1		
Massachusetts (1929, 1847)	1	1					2		
Rhode Island (1929, 1844)	2	1	1				3		
Connecticut (1964, 1932)	1	1					1		
New York (1895, 1844)	2	1	1				7		
New Jersey (1918, 1844)	6	3	2	1			8		
Pennsylvania (, 1981)									
Delaware (, 1896)									
Maryland (1929, 1844)	1		1				1		
Virginia (, 1844)									
North Carolina (, 1882)									
South Carolina (1886, 1850)	2	1	1				2		
Georgia (, 1851)									
Florida (1886, 1898)	4	3	1				5		
Atlantic Coast Totals	21	13	7	1	0	0	33	0	\$0
Florida (, 1847)									
Alabama (, 1966)									
Mississippi (, 1978)									
Louisiana (, 1932)							_		
Texas (1918, 1908)	1	1	_	-	_	_	1	_	4
Gulf Coast Totals	1	1	0	0	0	0	1	0	\$0
Puerto Rico (1867, 1954)	10	2	3	2	1	2	36	140	\$62
Virgin Islands (1690, 1975)	9	2	3	1	1	2	22	24	
PR & VI Totals	19	4	6	3	2	4	58	164	\$62
Washington (1891, 1855)	28	2	20	2	3	1	98	1	\$8
Oregon (1854, 1853)	29		23	1	3	2	98	5	\$6
California (1812, 1853)	87	5	60	8	10	4	615	19	\$215
West Coast Totals	144	7	103	11	16	7	811	25	\$229
West coast lotals	444	,	103		10		011	23	9223
Guam (1849, 1948)	16	3	10		2	1	25	1	
Northern Mariana (1990, 1978)	11	1	9		1		12		
Western Pacific Is. Totals	27	4	19	0	3	1	37	1	
American Samoa (1837, 1948)	67	10	48	5	3	1	294	34	\$138
Alaska (1737, 1872) Totals	97	7	63	5	6	16	459	222	\$767
Hawaii (1812, 1872) Totals	132	2	95	5	11	19	1989	293	\$610
AMERICAN Totals	508	48	341	30	41	48	3682	739	\$1,806

RESULTS – TSUNAMI EVENT LOCAL / DISTANT RUNUPS BY STATE AND REGION

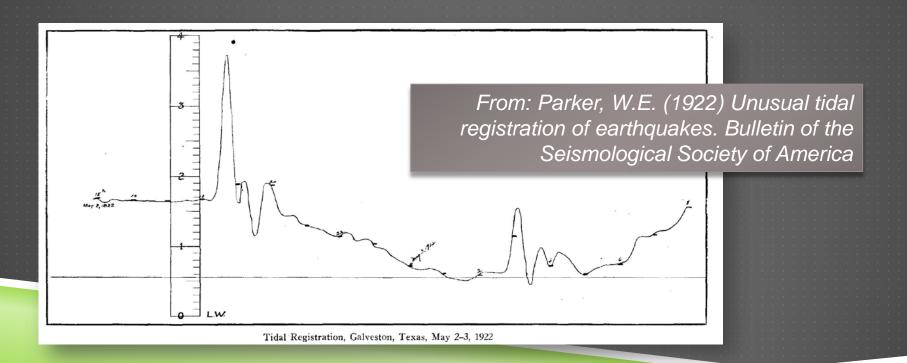

- ► HI & U.S. west coast States
 - Distant sources caused most deaths, \$damage
- AK, Caribbean, & Pacific Is
 - Local sources caused all deaths, \$damage
- All deaths resulted from runups >3 m
 - except one in CA (2011)

Table 2-2. Tsunami events, total number of measured runups, deaths, and \$damage from local vs distant sources, by State and region from the NOAA/NGDC tsunami database. Dollars adjusted for inflation to \$2013. Data are through 31 January 2014. Changes since 2006 are indicated in red.

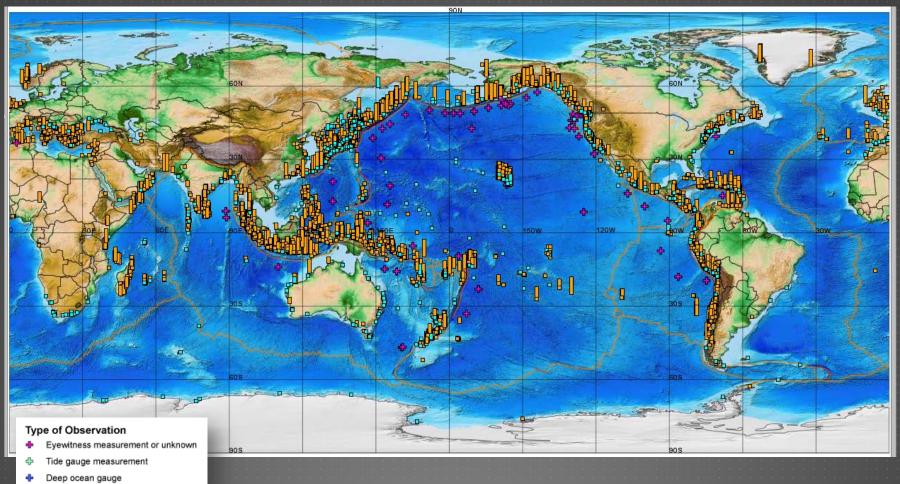
	Local	<u>Distant</u>	Local	Distant	Local	<u>Distant</u>	Local	<u>Distant</u>	Local	Distant	Local	<u>Distant</u>	
	0.01 to	o 0.5 m	0.51 to	0.51 to 1.0 m		1.01 to 3.0		>3.0 m		Deaths*		\$M Damage	
Rhode Island	1												
New York	1												
New Jersey		2		1									
Maryland		1											
South Carolina		1											
Florida		1											
Atlantic Coast Totals	2	5		1									
Puerto Rico	1	2	2		1		2		140		\$62		
Virgin Islands	1	2	1		1		2		24				
PR & VI Totals	2	4	3		2		4		164		\$62		
Washington		20		2	2	1		1	1			\$8	
Oregon	1	22		1		3	1	1		5		\$6	
California	5	55	3	5	2	8	3	1	2	17		\$215	
West Coast Totals	6	97	3	8	4	12	4	3	3	22		\$228	
Guam		10			2		1		1				
N. Mariana	2	7				1							
W. Pacific Is. Totals	2	17			2	1	1		1				
American Samoa	8	40		5	1	2	1		34		\$138		
Alaska Totals	20	43	4	1	1	5	15	1	222		\$767		
Hawaii Totals	2	93		5	2	9	4	15	49	244	\$6	\$604	
AMERICAN Totals	42	299	10	20	12	29	29	19	473	266	\$911	\$832	

UNUSUAL TIDAL REGISTRATION

- May 2, 1922 unusual curve found on Galveston, TX tide gauge
- "These unusual waves are not of the nature caused by the tides or by meteorological conditions, but undoubtedly are of seismic origin."
- "It may be stated that it is now the practice of the Coast and Geodetic Survey to examine the tide rolls whenever the seismograms indicate submarine earthquakes in the general region, and also to investigate the seismograms when tidal phenomena are unusual."

NINETEENTH CENTURY TIDE DATA

- Memory of most pre-1900 tide records has largely disappeared from the modern scientific literature...
- The only exceptions to this neglect are short segments of marigrams which have been used to reconstruct past tsunamis (e.g. Lander, et al., 1993, Tsunamis affecting the west coast of the United States, 1806–1992, NGDC)
- Lander, et al., examined marigrams for all tsunami publications
 U.S. Tsunamis 1690-1988, Tsunamis Affecting Alaska 1737-1996; Caribbean Tsunamis 1498-1998, Tsunamis of the Eastern U.S. 1668-1992

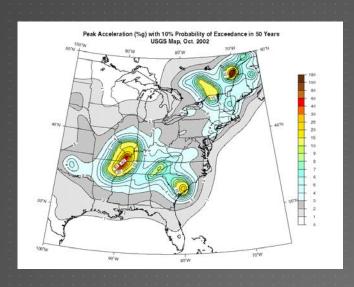

US West Coast and Hawaii

<u> </u>		
		Currently
Location	Start Date	Digitized Hourly
San Francisco, CA	1853	1853-pr (present)
San Diego, CA	1853	1906-pr
Astoria, OR	1853	1925-pr
Port Townsend, WA	1855	1966, 1972-pr
Seattle, WA	1891	1899-pr
Kodiak, AK	1880	1975-pr
Honolulu, HI	1877	1877-82, 1905-pr

From: Talke and Jay (2013) Nineteenth Century North American and Pacific Tidal Data: Lost or Just Forgotten?

US East Coast

		Hourly Data
Location	Start Date	Available
Eastport, ME	1860	1930-pr
Portland, ME	1852	1912-pr
Boston, MA	1847	1921-pr
Newport, RI	1844	1930-pr
Willets Point, NY	1885	1957-2000
New York, NY	1844	1920-pr
Sandy Hook, NJ	1844	1910-pr
Baltimore, MD	1845	1902-pr
Annapolis, MD	1844	1928-pr
Washington, DC	1852	1931-pr
Old Point Comfort, VA	1844	1927-pr
Wilmington, NC	1882	1930-pr
Charleston, SC	1850	1921-pr
Fort Pulaski, GA	1851	1935-pr
Key West, FL	1847	1913-pr



Post-tsunami survey measurement Seiche or atmospheric pressure wave TsuDig, WDC-MGG Historical Tsunami GIS

Collaborative – ITIC / NGDC

USGS EARTHQUAKE HAZARDS ASSESSMENT

Earthquake databases can be used to extend the historical tsunami record backward in time

Subduction zones

State/Territory	Non- subduction earthquake with mag > 6.5 in 500 years within 50 km of coast	Subduction zone event with mag >msubduct in 500 years within 150 km of coast	Maximum magnitude observed or estimated for nearshore or offshore	Comment			
		Puerto Rico	and the Virgin Islands, ms	subduct = 7.5			
Puerto Rico	100%	~100%	7.5	1918 Mona Passage, severe tsunami**			
Virgin Islands	100%	~100%	7.5	1867 Virgin Islands, severe tsunami			
Pacific CoastCascadia, msubduct = 8.1							
Washington	30% to 90%	~100%	9+	1700 Cascadia, severe tsunami			
Oregon	10% to 100%	~100%	9+	1700 Cascadia, severe tsunami			
California	100%	~100%	9+	1700 Cascadia, severe tsunami			
		Pacific	Coast-Alaska, msubduc	t = 7.5			
Alaska	100%*	~100%	9.2	1964 Alaska, severe tsunami			
		Wes	stem Pacific, msubduct =	7.8			
Guam	N/A	~100%	7.8	1993 Guam, non-destructive tsunami			
Northem Mariana	N/A	~100%	7.8	1993 Guam, non-destructive tsunami			
American Samoa	N/A	~100%	8.5	1917 Northern Tonga trench, moderate tsunami			
Alaska calculation	forman>65 i	ncludes subduct	tion interface events				

	<u> </u>	<u> </u>		<u> </u>
	Earthquake with Mag > 6.5 in 500 years	Earthquake with Mag > 6.5 in 5000 years	Historical maximum magnitude observed	
State/Territory	within 50 km of coast	within 50 km of coast	nearshore or offshore	Comment
		U.S. Atlantic Coast		
Maine	<3%	<30%	<6	
New Hampshire	<3%	<30%	<6	
Massachusetts	<3%	<25%	<6	
Rhode Island	<2%	<15%	<6	
Connecticut	<2%	<30%	<6	
New York	<4%	<30%	<6	
New Jersey	<4%	<30%	<6	
Pennsylvania	<3%	<15%	<6	
Delaware	<3%	<15%	<6	
Maryland	<2%	<15%	<6	
Virginia	<1%	<4%	<6	
North Carolina	<1 to 5%	<5%	<6	
South Carolina	<35%	100%	7.3	1886 Charleston,
				non-destructive tsunami
Georgia	<1%	<10%	<6	
Florida	<1%	<3%	<6	
		U.S. Gulf Coast		
Florida	<1%	<3%	<6	
Alabama	<1%	<4%	<6	
Mississippi	<1%	<5%	<6	
Louisiana	<1%	<5%	<6	
Texas	<1%	<4%	<6	

Hawaii, Southern California, and Arctic Coast of Alaska

	Mag > 6.5 in 500 years within 50 km	Mag > 7.5 in 500 years within 50 km	observed or estimated					
State/area	of coast	of coast	s	offshore	Comment			
Hawaii and Southern California								
Hawaii	~100%	~100%		7.9	1868 Ka'u district, severe tsunami			
Southern California	~100%	~100%		7.1	1927 Lompoc, moderate tsunami			
Arctic Coast—Alaska								
Alaska	<1%	N/A		<6	Arctic coast rated no tsunami risk by Alaska			

LATEST RESEARCH

- ▶ ten Brink, U., Chaytor, Geist, Brothers, Andrews (in press) Tsunami hazard assessment for the U.S. Atlantic margin: Progress Procedures, and Processes
 - "Tsunamis along the U.S.Atlantic margin are rare events, because potential earthquake-generated tsunamis are located in areas of slow tectonic activity, and because landslide-generated tsunamis are probably triggered by infrequent earthquakes along the margin."
- ► Goldfinger, Nelson, Morey, et al. (2012) Turbidite event history—Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone: USGS Professional Paper 1661–F
 - "The sequence of 41 events defines an average recurrence period for the southern Cascadia margin of ~240 years during the past 10 k.y."
- Leonard, L.J., G.C. Rogers, and S. Mazzotti (2012). A Preliminary Tsunami Hazard Assessment of the Canadian Coastline. Geological Survey of Canada, Open File 7201
- ► Frankel (2011) Summary of Nov 2010 Meeting to Evaluate Turbidite Data for Constraining the Recurrence Parameters of Great Cascadia Earthquakes for the Update of National Seismic Hazard Maps, USGS OF 2011–1310
 - "Participants were comfortable with the 500-600 yr average recurrence time for long ruptures of the entire CSZ accomplished entire the M9 or serial M8 earthquakes."

NOAA / USGS NTHMP ANNUAL MEETING

LATEST RESEARCH - CONTD

- ► Shennan, Bruhn, Plafker (2009) Multi-segment earthquakes and tsunami potential of the Aleutian megathrust, Quaternary Science Reviews, v. 28
- ▶ Priest, Goldfinger, Wang, Witter, Zhang, Baptista (2009) Confidence limits for tsunamiinundation limits in northern Oregon inferred from a 10,000-year history of great earthquakes at the Cascadia subduction zone, Natural Hazards
- ▶ Burak, Eble, Titov, Bernard (2010) Tsunami Hazard Assessment Special Series: Vol. 2
 Distant tsunami threats to the ports of Los Angeles and Long Beach, California
- ► Thio, Somerville, Polet (2010) Probabilistic tsunami hazard in California, Pacific Earthquake Engineering Research Center Report 2010/108
- Rabinovich, Thomson, Titov, Stephenson, Rogers (2008) Locally Generated Tsunamis Recorded on the Coast of British Columbia. Atmosphere-Ocean, v. 46
 - "Contrary to accepted understanding, our findings demonstrate that local earthquakes with magnitudes far below the generally accepted threshold level of 7.0 are capable of generating significant tsunamis."

QUALITATIVE NATIONAL TSUNAMI HAZARD ASSESSMENT

Region	Hazard based on runups	Hazard based on frequency	Hazard based on local earthquakes	Number of reported deaths
U.S. Atlantic coast	Very low to low	Very low	Very low to low	None
U.S. Gulf coast	Very low	Very low	Very low	None
Puerto Rico and the Virgin Islands	High	High	High	172
U.S. west coast	High	High	High	24
Alaska	Very high	Very high	High	222
Hawaii	Very high	Very high	High	326
U.S. Pacific island territories	Moderate	High	High	1

Suggested 2014

2008

Region	Hazard based on runups	Hazard based on frequency	Hazard based on local earthquakes	Hazard based on distant earthquakes	Number of reported deaths
U.S. Atlantic coast	Very low to low	Very low	Very low to low		None
U.S. Gulf coast	Very low	Very low	Very low		None
Puerto Rico and the Virgin Islands	High	High	High		164
U.S. west coast	High	High	High		25*
Alaska	Very high	Very high	Very High		222
Hawaii	Very high	Very high	Moderate		293
American Samoa	High	High	High		34
U.S. Western Pacific Island territories	Moderate	High	High		1

NOAA / USGS

COMMUNITY VULNERABILITY

- Population vulnerability to future tsunamis is a function of three components -
 - Population exposure is related to hazard proximity and the physical characteristics of the tsunami (e.g., arrival times, spatial extent).
 - Sensitivity refers to differential degrees of potential harm among at-risk populations, based on the internal characteristics of an individual, group, or socioeconomic system

Adaptive capacity describes possible adjustments and responses of a system to reduce a population's exposure or sensitivity.

Estimates of population exposure to tsunamihazard zones in various States

California	Hawaii	Oregon	Washington
Wood et al., 2012	Wood et al., 2007	Wood, 2007	Wood and Soulard, 2008
2010, 2011	2000, 2006	2000, 2006	2000, 2006
Open-ocean coast and San Francisco Bay	Entire coastline	Entire coastline	Olympic Peninsula counties (4)
Maximum based on multiple scenarios	Maximum based on multiple scenarios	Cascadia subduction zone	Cascadia subduction zone
267,347	80,443	22,201	42,972
168,565	67,113	14,857	24,934
1,152	603	231	252
1,388	313	43	121
166,322	n/a¹	53,714	17,029
384,801	n/a¹	n/al	n/a¹
	2010, 2011 Open-ocean coast and San Francisco Bay Maximum based on multiple scenarios 267,347 168,565 1,152 1,388 166,322 384,801	2010, 2011 2000, 2006	2010, 2011 2000, 2006 2000, 2006 Open-ocean coast and San Francisco Bay Entire coastline Entire coastline Maximum based on multiple scenarios Maximum based on multiple scenarios Cascadia subduction zone 267,347 80,443 22,201 168,565 67,113 14,857 1,152 603 231 1,388 313 43 166,322 n/a ¹ 53,714 384,801 n/a ¹ n/a ¹

Data unavallable at the time of analysis

QUESTIONS?