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Literature review established broad selection of
potential sources for US East Coast
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An Overview of Distant Sources I: Flank collapse of
Cumbre Vieja Volcano using 3D multi-fluid VOF model

2D slope stability computations (with 2 different models) on various cross
sections. Geotechnical parameters are progressively reduced (mimicking
hydrothermal alteration) until unstable state.

3D slide volumes are inferred using a 3D ellipsoid shape, based on the 2D

failure contours and geological considerations for lateral extent.

=> Slide volumes range from 20 to 80 km?3, depending on the scenario, with an additional
extreme 450 km? scenario. (similar to Ward and Day, 2000)
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[Vizualisation of the quasi elliptic
failure contour (Drucker-Prager
failure criterion) calculated with
the finite element code ADELLI]



Set-up of 3D tsunami generation model (THETIS)

400
3000
300 FUNWAVE-TVD domain . Geometry of 3D
’ 2000 .
200 THETIS domain
% Nested within larger
100 .
_ 0 scale domain for
£ o 1000 propagation model
-100 ~2000 .
oo o (Abadie etal., JGR,
2012)
-300 -4000
400 ~5000
-400 -200 0 200 400 600

x [km]

La Palma

3-D view of
THETIS
domain



CVV 450 km3 3D tsunami generation (THETIS)




Computational domains for FUNWAVE
propagation modeling
Multi-model, nested grid simulations => Thetis (3D) 500 m grid, to

FUNWAVE (Cart. 2D) 1000 m grid, to FUNWAVE 2’, 30" (Spherical
2D), 7.5" and 30 m (Cart. 2D) grids.
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CVV FUNWAVE-TVD propagation modeling
(spherical to Cartesian inundation grids)

time = 00:20:00
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CVV impact on East Coast: New England (30” grid)
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CVV impact on East Coast: South-East (30" grid)

A5t

3:




CVV impact on East Coast: Mid-Atlantic (30” grid)
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CVV impact off of NJ: with barrier (30 m grid)
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CVV impact off of NJ: no barrier (30 m grid)
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Overview of Distant Sources Il: PRT/Caribbean
subduction zone tsunamigenic earthquakes

Summary

* Historical examples include 1867
(7.7 near US Virgin Islands); 1918
(7.3 from PR); 2010 (7.0 from PR)

* Tsunami risk studied by many
(e.g., Zahibo and Pelinovsky 2001)

e NOAA Forecast Source Database

(Gica et al. 2008) modeled series
of potential sources (SIFT)

* Potential high risk to particular
communities (e.g., S. Carolina)

* Use Okada (1985) to initialize

FUNWAVE (spherical) on the free SO )
surface as a hot start NOAA Forecast Source Database
Example (at49b)




Overview of Distant Sources II: PRT/Caribbean
subduction zone tsunamigenic earthquakes
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Overview of Distant Sources ll: PRT/Caribbean

subduction zone tsunamigenic earthquakes
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Max. Elevation for a PRT M9 source (30” grid)
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Overview of distant sources lll: Azores-Gibraltar
convergence zone

Summary 40
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Max. Elevation for M9 Lisbon 1755 sources (1’ grid)

42° N ' ' 0.25
0.2
40° N
e 10.15
Atla Ily |
i b 10.1
Dcea
38°N ’ mw
0.05
ch

36N 3 , l
W 76 W 74 W 72 W 70 W



SMF source selection: Probabilistic analysis of
coastal hazards associated with submarine
mass failures

?D'q\? W70 WED W50 W40 W30 W20 W10 W 5

Summary

 Two major historical SMF
tsunamis caused by :
Grand Banks (1929) and 50 N
Currituck (24-50,000
years ago)

* 33% of US East Coast
continental slope covered oy
by landslide scars and 40" N .
deposits (Twichell et al. \JJ o
2009) 20" N

* Large number of SMFs
were analyzed using 20" N
Monte Carlo analysis _
(MCS) in addition to 10 N
historical cases -2

1929 Grand Banks source
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Results of MCS analysis of SMF tsunami hazard
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* Simplified coastline with names of corresponding coastal states,
ranges of indices of studied coastal points, numbered N-S (

[Baxter et al., 2011; Krauss, 2011; Grilli et al. 2009.]
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Collaborative work with USGS (J. Chaytor, U. Ten
Brink) for site specific validation of MCS
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Locations of the transects for site specific
analysis of seismically triggered SMFs
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Locations of boreholes and available data
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meters below sea level

meters below sea level

Bathymetry/seismic lines along transects

Bathymetry of the Hudson Apron north-east transect
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Depth (mbsf)

10

Site response analysis along transects (P-, S-wave, PGA
analyses from log/core data)

=> Stability analysis/tsunami genesis to follow
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Modeling of SMF Tsunami generation and
propagation (NHWAVE-FUNWAVE.TVD)

Old approach for SMF tsunamis

 Generated by TOPICS (see
e.g., Watts et al., 2003)

* Propagation as a restart of
FUNWAVE (2D)

e Successfully used
previously for submarine
landslides (e.g., Watts et
al., 2003) and co-seismic
sources (e.g., Grilli et al.,
2005-2010)

New approach for SMF tsunamis

Generation by NHWAVE
(Ma et al., 2012) =>

3D sigma-level non-
hydrostatic model

Propagation by FUNWAVE-
TVD : (Shietal., 2012) =>
2D Boussinesq model

Successfully used to
simulate laboratory
experiments and a few
case studies



NHWAVE simulation of Enet and Grilli’s (2007) slide




Enet and Grilli: Model — data comparison
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Simulations of SMF tsunami generation, propagation and
coastal impact

Tsunami elevation computed with NHWAVE (up to 15 mins.) and
FUNWAVE-TVD, in a 500 m regional grid, for the first SMF source. (a)
instantaneous elevation after 75 mins of propagation; (b) maximum
envelope of elevation
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SMF/landslide issues

. Appropriateness of SMF-MCS events from a geological standpoint:
« MCS estimated sources are being validated by USGS working with the
UD/URI team (completion by end of August 2012)

. Appropriateness of using SMF-MCS probabilistic results, or should worst-
case historical scenarios form the basis of NTHMP mapping, or both ?.
« UD/URI have sought input from the NTHMP program on this question.
« Guidance on this question could be gained from this workshop.

. Tsunami wave trains generated by SMF events show large (perhaps
excessive) dissipation over wide continental shelves:
« Coastal tsunami hazard depends on wave shoaling/dissipation balance

. Effects of extensive barrier islands/beaches on arriving tsunamis:
« Should barriers be removed to simulate worst breaching/erosion ?

. One should be actively looking for paleotsunami evidence on the East Coast
(return periods, size....)



Issue: Large dissipation of (SMF) tsunami
wave trains over wide shelves

* Tsunamis often arrive onshore as much more complex wavetrains than
had been typically assumed (e.g., long solitary or N-waves)

=> Long waves with superimposed undular bores made of shorter and
steeper waves (intense breaking of those in shallow water)

i i i i i i i i i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
' (m)

[From Madsen et al. (2008) : 12/26/04 observations and 1D BM modeling]
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Large dissipation of SMF tsunami wave trains
over wide shelves (rationale)




Modeling coastal tsunami hazard => shoaling and breaking of such
wave trains over complex bathymetry/topography, including interplay
and effects on runup and inundation of nonlinear, dispersive, and
breaking dissipation processes. [Even more so for SMF tsunamis]

Fully nonlinear/dispersive BM models feature this kind of physics =>
FUNWAVE-TVD (Shi et al., 2012) switches from BM to NSW at breaking,

controlled by breaking criterion (H < 0.8 times local depth).




Modeling approach affects SMF tsunami hazard

e NTHMP coastal tsunami hazard assessment => Intense dissipation of
incoming tsunami wave trains, particularly for SMF tsunamis (e.g.,
Currituck source: 3D-NHWAVE -> FUNWAVE

-> Must be further studied/

elucidated !!
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