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CURRENT VIEW (Goldfinger et al., 2012, p. 111, 124). Turbidites correlate 
exactly enough to warrant the same name (such as T2) along most or all the 
length of the subduction zone. The correlations demonstrate 19 

. The northern third broke at these times only.

ALTERNATIVE VIEW . Impartial 
description, as

urbidite C2 in Cascadia Channel is centuries older 
than turbidite J2 of Juan de Fuca Channel (t . 
J2 records an independent northern rupture. 

full-length 
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(Atwater and Griggs, 2012, p. 5-6, 21-25)
 in Pouderoux et al. (2012), requires local turbidite names. The 

full length of the fault breaks not just in single ruptures but also in swift 
series of shorter ones. T

hough both have been called T2)

CURRENT VIEW (Goldfinger et al., 2012, p. 91-92). In the 7500-7800 years since 
the Mazama eruption, the plate boundary has ruptured 2.5 times more often offshore 
southern Oregon (near R) than offshore southern Washington (near Q).

ALTERNATIVE VIEW . The southern Oregon 
cores contain more turbidites primarily because they adjoin a steep slope. Only the largest 
flows generated offshore southern Washington continued  lower 
Cascadia Channel ( ). Two Juan de Fuca cores contain 13-14 post-Mazama turbidites (

but these may represent overbank flows of chiefly Quinault origin. A more proximal 
Juan de Fuca core (at 5) shows as many as 20 turbidites of post-Mazama age.

 (Atwater and Griggs, p. 8, 25, fig. 1, table 1)
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CURRENT VIEW (Adams, 
1990). Cascadia Channel (C) 
monitors fault rupture beneath 
both its main tributaries by 
transmitting, for hundreds of 
kilometers, their merged turbidity 
currents.

ALTERNATIVE VIEW 
(Atwater and Griggs, 2012, figs. 
3, 4). The southern tributary (Q) 
dominates. The resulting distal 
turbidites are indifferent to fault 
rupture that extends beneath the 
northern tributary (JdF).
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D  Turbidites as seismograms

E  Erosion of hemipelagic deposits
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CURRENT VIEW (Goldfinger et al., 2012, p. 135). Each 
broad pulse in ground motion produces a sediment pulse in 
a turbidity current. The sediment pulse yields a sandy layer 
low in a turbidite. The sandy layer, like the ground-motion 
maximum it represents, correlates along hundreds of 
kilometers of fault rupture (rupture lengths in A). 

ALTERNATIVE VIEW (Atwater et al., 2012, p. 13-16, 
fig. 5). Shaking varies along and across strike. Initial mass 
movements respond to cumulative shaking and are prone 
to delay. Flows are transformed by changes in slope 
(hydraulic jumps), erosion of bed (ignition), division at 
bends (flow splitting), sequential merger, and eventual 
self-organization. Geophysical logs of the sandy layers are 
too simple and variable for these signal shredders to be 
discounted. 

CURRENT VIEW (Goldfinger et al., 2012, appendix 
1). Correction for erosion e helps reduce the difference 
between the age of foraminifera dated and the time of 
deposition of the overlying turbidite. Uncertainty in e is 
±0.5 cm, or about ±25 to ±50 yr of hemipelagic 
deposition. This and other adjustments add more than a 
decade to the total uncertainty in dating a turbidite.

ALTERNATIVE VIEW (Atwater et al., 2012, p. 17-19, 
figs. 6-8). Estimates of e for a correlated hemipelagic 
unit differ by several centimeters among nearby cores, 
and the radiocarbon sample commonly spans at least 
half the unit’s thickness. The resulting erosion 
corrections doubtfully shift a series of turbidite ages by 
about 500 years an entire average recurrence interval. 
With a smaller correction, the nominal T2 turbidite in 
Cascadia Channel dates from T3 time (A)—an 
alternative that improves agreement between offshore 
and onshore estimates of earthquake ages. 
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a, Two ground-motion 
pulses (     ,      ) shake 
a submarine canyon.

b, Hours later, two corresponding pulses 
of sediment each deposit a sandy layer 
in a deep-sea turbidite.
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Dating of foraminfera from the 
hemipelagic clay beneath would 
provide a maximum age for this 
turbidite.
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Time Turbidites C7 and C8 of core 6609-24 
of Griggs and Kulm (1970)
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