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Sources for East Coast modeling documented in technical reports
available at http://chinacat.coastal.udel.edu/nthmp.htmi
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FY10-12 and FY 13 DEM coverage
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slump scars indicate slope instabili- mated volume and nature of the Failure mechanisms (tab. 1). bl BRI Failure Scenard
ties that will lead to large-scale fail- arameters | Andslide Names Allure Scenanes

ures in the near future (fig, 2). Single Slope Failure (SSF)
Anisolated collapse of the beta-failure mass is simulated |
(Fg. ). Thickness.

(]

FMSF

Combined Slope Failure ({CSF)
The failure of alpha-, beta-, and gamma-mass simultane-
ously is simulated and approximated as single landslide Wideh [lam)
mass (fig. 2). Wibts degih

R : 53 ¥ Bahama
Potential Major Slope Failure (pMSF) e Archipelago
The failure of an over 8o km long scar is simulated (fig. 3). :

Length k]

the volume and nature of past large mass movements
within this area and the mass transport complexes (MTC)
in the basin (fig. 3).

Two bathymetric grids were used for the simulations (fig. 4)
{1} is a 30 x 30 m grid based on multibeam data acquired during CARAMBAR
cruise (Mulder et al. 2012). The grid was used for landslide and tsunami initi-
ation
{2} Is the general bathymetric chart of the oceans, GEBCO-grid, in a 700
= = 700 m resolution and was used for the propagation simulations.
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The 30 % 30 m resolution bathymetric grid was converted into UTM and

All simulations ending in a consid- re-gridded in MATLAB (fig. 5).
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of 20, go and 100 ms* were used, Landslide outrun direction was assumed to be westwards. drastatic wave modal NHWAWVE (Ma et al, 2012). The model was deval-
oped for submarine landslide induced tsunami wave simulation and simu-
lates fully dispersive surface wave processes,

The resulting wave from these first fons, then was rei

input into the fully nonlinear and dispersive Boussinesq model
FUNWAVE-TVD to simulate the wave propagation and estimate an
impact with the coastline (Shiet al., 2002).
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Inundation “mapping”

Mapping for each DEM is being documented in individual
reports and accompanying data sets.

Data provided as ArcGIS raster or vector files.

Reported data include

1. Ininundated (initially dry) areas:

Maximum inundation depth during event (raster)
Maximum velocity during event (raster)
Maximum momentum flux during event (raster)
Location of inundation line (vector)

oo op

2. Ininitially wet areas:
a. Maximum surface displacement during event
b. Maximum velocity during event



Grid nesting from ocean to DEM and DEM to local
1 arc second
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Maximum occuring velocities
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