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Hazard From Submarine Mass Failures Along

A Monte Carlo Approach for Estimating Tsunami




m Validation of MC simulations

m Statistical Analysis of Runups
B MC Model and Direct Tsunami Simulations Results

m Limitations and Ways Forward
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Objectives

including Submarine Mass Failures (SMFs) :

-> Apply and validate a first-order probabilistic model based on
Monte Carlo Simulations of slope stability (Grilli et al., 2009)

-> Use this model as a screening tool to identify areas at risk
to be selected for more detailed analyses

-> Select parameters of potential SMF source (volumes,
length/width, and locations) and perform deterministic analyses
of tsunami coastal impact (ongoing task)
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Methodology of Monte Carlo Simulations

m Probabilistic computation of slope stability:
-> Selection of coastal transects and slope geometry

-> Quantify seismicity (PHA) and overpressures as SMF
triggering mechanisms

-> Quantify sediment properties (type, density,...)

m Prediction of initial tsunami amplitude and coastal runup
for each SMF, at a series of (3500+) Coastal Points

m Statistical analysis of predicted MCS runups fo estimate
100-year and 500-year runup for each Coastal Point

I--’.‘-I Dept. of Ocean
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Bathymetry/Topography Data

Data Source : US Coastal Relief

Model
o NOAA NGDC
o Bathymetry sources:
NOS Hydrographic Database
m USGS
MBARI
USACE LIDAR (SHOALS)
o Topography data:
m USGS Digital Elevation Models (DEMs)
m Shuttle Radar Topography data (SRTM)
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Northern
Transects

[as in Grilli et
al. (2009), MG
special issue for
detail]
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Coastline

simplified by N
=1 - 3510
coastal points

[New NTHMP
area of study;

3510 Coastal
points]
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B Bedrock 0 sand B Clay
B Gravel Clay-Silt'Sand [ Sand-Silt/Clay
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Surficial
sediment
properties

on transects
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Seismicity Data from
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gl
Principles of Monte Carlo simulations
of SMF tsunami runup

® Monte Carlo simulations (MCS): stochastic simulations of SMF tsunami
runup => parameters described by random variables y;, for i = 1,..N

® Parameterization of ¥, distributions for :

- earthquake excitation (magnitude, distance, acceler.) from location,
- sediment properties (density, nature, cohesion,...), from location

- slope geometry (angle, depth, length, width,...), from transect data
- failure and type (landslide/slump) from slope stability analyses,

- tsunami generation/runup (empirical, based on numerical modeling)

® Computation of tsunami hazard (coastal runup) at coastal points in
terms of probability of occurrence.
bearbumg  Dept. of Ocean
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For transects 1 to 45
Open Transect File

Go to Next
Transect
MCS Flowchart | /! -
o a Is j > max nb. of runs ?
Select Trial Surface
y
Generate Sediment Data
] PHA increases by 10-yr

PHA > 750-yr

Determine Slope Stability PHA< 750 & SF > 1

(i.e. SF>1)

SF <1

N < 0.02-m

Is a Tsunami Generated ?

and Coastal Runup

( Estimate Tsunami Propagation
L Levels
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Probability
Distributions of
Input Data and

Predicted Runup

issue for detail]
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Log-normally Distributed Input Parameters:

« Depth to Failure
« Failure Length
« Failure Thickness

Additional Parameters:
* Seismicity

Normally Distributed Input Parameters:

i

Uniformly Distributed Input Parameters:

« Sediment Density

« Effective Friction
Angle

« Undrained Shear
Strength Ratio

« Excess Pore Pressure

* Maximum Angular Displacement

(Rotational Failures)

_ "

Normally Distributed Input Parameters:

« Angular Variation
« Coastal Impact Distribution
(Runup Spreading)
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Slope Stability by Limit Equilibrium

I
Al
2 Subl,

E(W’isinai+kVVi(cosai— ' ))
i= 2r 5,

o Slides/translational SMFs were modeled using Infinite Slope
Method :

g -DA-R)-kytanf
(y—Dtanf+ k y

¢'

o Pseudostatic coefficient k is assumed to be equal to peak
horizontal acceleration (PHA)

e Pore pressure ratio (Ru) based loosely on ODP 174 field data
Letm.g Dept. of Ocean
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MC Runup: Simplified coastline and coastal points
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MC Runup: Simplified coastline and coastal points

N

Gaussian Runup Distribution

s

SMF model simulations

(Grilli and Watts, 2005 and
others)

® Inundation
-> Correspondence Principle

-> Gaussian Distribution

® Shoreline simplified and
defined by 3500+
coastal points

I--{‘-I Dept. of Ocean
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Statistical Analysis of Runup

=> A Y year return period event (or recurrence interval) is
equaled or exceeded once on average every Y years.

=> The reciprocal of the return period is the probability that
the event is equaled or exceeded in any given year.

® Not all earthquakes cause SMFs and not all SMFs cause
tsunamis (i.e., are tsunamigenic) !

I--’.’--I Dept. of Ocean
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Statistical Analysis of Runup

n
P =__
N

e N: total number of MC simulations

® Annual probability of tsunamigenic slope failure :

P —

SMF PHA

¥

® P, : earthquake annual probability
L+J Dept. of Ocean

fihe S Engineering, URI AGU 12/6/11 20



Statistical Analysis of Runup

® Runups generated from tsunamigenic SMFs in MCS at eac
coastal point, are sorfed in descending order from 1 to m-th.

* The value of runup for a given probability of exceedance
(P,) corresponds to the z'™ data point: P,

S = .
(P ) 100

m

=> we computed and plotted 100 and 500 year runups

|--’."-| Dept. of Ocean
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-> Coefficient of variation

SLOPE-W ™ results =>
® Published Sediment Properties:

Distance Along Transect [m]

® Geological Observations:

-> MC predictions for freq. of Slump/Slide, SMF area and volume were
compared to observations of Booth et al. (1993) and Chaytor et al. (2009)

Dept. of Ocean
Engineering, URI
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MC 100 vy [
MC 500y |H
Observ. ]

Translational Rotational
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0.1-0.5
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=> and similarly for rotational failures...
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[Boxes denote available DEMS at 1/3“]
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Limitations and Future Improvements

e Field validation of selected SMFs (USGS/URI) (1s* presentation)
e Applicability/accuracy of USGS PHA offshore

® Use of surficial sediment data and large uncertainties in
stratigraphy for geotechnical properties -> need for more site
specific data and coring (more USGS cruises this summer)

*Limitations of limit equilibrium methods to model progressive
failure or multiple failure scenarios

e Simplified estimates of runup (correspondence principle, no
breaking waves)
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Shear Measurement System [SMS)
University of Rhode Island
Geophone array variant

SHALU Det2 Acgebsiion Pressure Coses




